The Hidden Language of
Computer Hardware and Software

L I o = ® ® ® -
1000011 1031 11l lﬂﬂﬂtﬂ'ﬂ 1000101
- L L 2 - - L] L2

Charles Petzold

Code: The Hidden Language of Computer
Hardware and Software

Charles Petzold

Copyright © 2009

Microsoft Press books are available through booksellers and distributors worldwide. For further information about international editions,
contact your local Microsoft Corporation office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web
site at mspress.microsoft.com. Send comments to mspinput@microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Microsoft, MS-DOS, and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company names mentioned herein
may be the trademarks of their respective owners.

Images of Charles Babbage, George Boole, Louis Braille, Herman Hollerith, Samuel Morse, and John von Neumann appear courtesy of
Corbis Images and were modified for this book by Joel Panchot. The January 1975 cover of Popular Electronics is reprinted by
permission of Ziff-Davis and the Ziff family. All other illustrations in the book were produced by Joel Panchot.

Unless otherwise noted, the example companies, organizations, products, people, and events depicted herein are fictitious. No association
with any real company, organization, product, person, or event is intended or should be inferred.

l} 1

http://mspress.microsoft.com
mailto:mspinput%40microsoft.com

Preface to the Paperback Edition

Code rattled around in my head for about a decade before I started writing it. As I was contemplating
Code and then writing it, and even after the book was published, people would ask me, "What's the
book about?"

I was always reluctant to answer this question. I'd mumble something about "a unique journey through
the evolution of the digital technologies that define the modern age" and hope that would be sufficient.

But finally I had to admit it: "Code is a book about how computers work."

As I feared, the reactions weren't favorable. "Oh, I have a book like that," some people would say, to
which my immediate response was, "No, no, no, you don't have a book like this one." I still think
that's true. Code is not like other how-computers-work books. It doesn't have big color illustrations of
disk drives with arrows showing how the data sweeps into the computer. Code has no drawings of
trains carrying a cargo of zeros and ones. Metaphors and similes are wonderful literary devices but
they do nothing but obscure the beauty of technology.

The other comment I heard was, "People don't want to know how computers work." And this I'm sure
is true. I personally happen to enjoy learning how things work. But I also like to choose which things I
learn about and which I do not. I'd be hard pressed to explain how my refrigerator works, for
example.

Yet I often hear people ask questions that reveal a need to know something about the inner workings
of personal computers. One such common question is, "What's the difference between storage and
memory?"

That's certainly a critical question. The marketing of personal computers is based on such concepts.
Even novice users are expected to know how many megas of the one thing and gigas of the other thing
will be necessary for their particular applications. Novice users are also expected to master the
concept of the computer "file" and to visualize how files are loaded from storage into memory and
saved from memory back to storage.

The storage-and-memory question is usually answered with an analogy: "Memory is like the surface
of your desk and storage is like the filing cabinet." That's not a bad answer as far as it goes. But I find
it quite unsatisfactory. It makes it sound as if computer architecture were patterned after an office.
The truth is that the distinction between memory and storage is an artificial one and exists solely
because we don't have a single storage medium that is both fast and vast as well as nonvolatile. What
we know today as "von Neumann architecture"—the dominant computer architecture for over 50
years—is a direct result of this technical deficiency.

Here's another question that someone once asked me: "Why can't you run Macintosh programs under
Windows?" My mouth opened to begin an answer when I realized that it involved many more
technical issues than I'm sure my questioner was prepared to deal with in one sitting,

I want Code to be a book that makes you understand these things, not in some abstract way, but with a
depth that just might even rival that of electrical engineers and programmers. I also hope that you
might recognize the computer to be one of the crowning achievements of twentieth century technology
and appreciate it as a beautiful thing in itself without metaphors and similes getting in the way.

Computers are constructed in a hierarchy, from transistors down at the bottom to the information
displayed on our computer screens at the top. Moving up each level in the hierarchy—which is how

Code is structured—is probably not as hard as most people might think. There is certainly a lot going
on inside the modern computer, but it is a lot of very common and simple operations.

Although computers today are more complex than the computers of 25 years or 50 years ago, they are
still fundamentally the same. That's what's so great about studying the history of technology: The
further back in time you go, the simpler the technologies become. Thus it's possible to reach a point
where it all makes relatively easy sense.

In Code, I went as far back as I could go. Astonishingly, I found that I could go back into the
nineteenth century and use early telegraph equipment to show how computers are built. In theory at
least, everything in the first 17 chapters of Code can be built entirely using simple electrical devices
that have been around for over a century.

This use of antique technology gives Code a fairly nostalgic feel, I think. Code is a book that could
never be titled The Faster New Faster Thing or Business @ the Speed of a Digital Nervous System.
The "bit" isn't defined until page 68; "byte" isn't defined until page 180. I don't mention transistors
until page 142, and that's only in passing,

So, while Code goes fairly deep into the workings of the computer (few other books show how
computer processors actually work, for example), the pace is fairly relaxed. Despite the depth, I tried
to make the trip as comfortable as possible.

But without little drawings of trains carrying a cargo of zeros and ones.
Charles Petzold
August 16, 2000

Chapter 1. Best Friends

code (kod) ...
3.a. A system of signals used to represent letters or numbers in transmitting messages.
b. A system of symbols, letters, or words given certain arbitrary meanings, used for transmitting messages requiring secrecy or
brevity.
4. A system of symbols and rules used to represent instructions to a computer...
—The American Heritage Dictionary of the English Language

You're 10 years old. Your best friend lives across the street. In fact, the windows of your bedrooms
face each other. Every night, after your parents have declared bedtime at the usual indecently early
hour, you still need to exchange thoughts, observations, secrets, gossip, jokes, and dreams. No one
can blame you. After all, the impulse to communicate is one of the most human of traits.

While the lights are still on in your bedrooms, you and your best friend can wave to each other from
the windows and, using broad gestures and rudimentary body language, convey a thought or two. But
sophisticated transactions seem difficult. And once the parents have decreed "Lights out!" the
situation seems hopeless.

How to communicate? The telephone perhaps? Do you have a telephone in your room at the age of
10? Even so, wherever the phone is you'll be overheard. If your family personal computer is hooked
into a phone line, it might offer soundless help, but again, it's not in your room.

What you and your best friend do own, however, are flashlights. Everyone knows that flashlights
were invented to let kids read books under the bed covers; flashlights also seem perfect for the job of
communicating after dark. They're certainly quiet enough, and the light is highly directional and
probably won't seep out under the bedroom door to alert your suspicious folks.

Can flashlights be made to speak? It's certainly worth a try. You learned how to write letters and
words on paper in first grade, so transferring that knowledge to the flashlight seems reasonable. All
you have to do is stand at your window and draw the letters with light. For an O, you turn on the
flashlight, sweep a circle in the air, and turn off the switch. For an I, you make a vertical stroke. But,
as you discover quickly, this method simply doesn't work. As you watch your friend's flashlight
making swoops and lines in the air, you find that it's too hard to assemble the multiple strokes together
in your head. These swirls and slashes of light are not precise enough.

You once saw a movie in which a couple of sailors signaled to each other across the sea with
blinking lights. In another movie, a spy wiggled a mirror to reflect the sunlight into a room where
another spy lay captive. Maybe that's the solution. So you first devise a simple technique. Each letter
of the alphabet corresponds to a series of flashlight blinks. An A is 1 blink, a B is 2 blinks, a C is 3
blinks, and so on to 26 blinks for Z. The word BAD is 2 blinks, 1 blink, and 4 blinks with little
pauses between the letters so you won't mistake the 7 blinks for a G. You'll pause a bit longer
between words.

This seems promising. The good news is that you no longer have to wave the flashlight in the air; all
you have to do is point and click. The bad news is that one of the first messages you try to send
("How are you?") turns out to require a grand total of 131 blinks of light! Moreover, you forgot about
punctuation, so you don't know how many blinks correspond to a question mark.

But you're close. Surely, you think, somebody must have faced this problem before, and you're

absolutely right. With daylight and a trip to the library for research, you discover a marvelous
invention known as Morse code. It's exactly what you've been looking for, even though you must now
relearn how to "write" all the letters of the alphabet.

Here's the difference: In the system you invented, every letter of the alphabet is a certain number of
blinks, from 1 blink for A to 26 blinks for Z. In Morse code, you have two kinds of blinks—short
blinks and long blinks. This makes Morse code more complicated, of course, but in actual use it turns
out to be much more efficient. The sentence "How are you?" now requires only 32 blinks (some short,
some long) rather than 131, and that's including a code for the question mark.

When discussing how Morse code works, people don't talk about "short blinks" and "long blinks."
Instead, they refer to "dots" and "dashes" because that's a convenient way of showing the codes on the
printed page. In Morse code, every letter of the alphabet corresponds to a short series of dots and
dashes, as you can see in the following table.

A -] —— S

B — K - qp -

& - L — U otmm
D —_ M - Y -
E . N - W ——
F somme 0O — X ——
C — P — Y p——
H sone Q p—— i ——
[i R —

Although Morse code has absolutely nothing to do with computers, becoming familiar with the nature
of codes is an essential preliminary to achieving a deep understanding of the hidden languages and
inner structures of computer hardware and software.

In this book, the word code usually means a system for transferring information among people and
machines. In other words, a code lets you communicate. Sometimes we think of codes as secret. But
most codes are not. Indeed, most codes must be well understood because they're the basis of human
communication.

In the beginning of One Hundred Years of Solitude, Gabriel Garcia Marquez recalls a time when "the
world was so recent that many things lacked names, and in order to indicate them it was necessary to
point." The names that we assign to things usually seem arbitrary. There seems to be no reason why
cats aren't called "dogs" and dogs aren't called "cats." You could say English vocabulary is a type of
code.

The sounds we make with our mouths to form words are a code intelligible to anyone who can hear
our voices and understands the language that we speak. We call this code "the spoken word," or
"speech.” We have other code for words on paper (or on stone, on wood, or in the air, say, via
skywriting). This code appears as handwritten characters or printed in newspapers, magazines, and
books. We call it "the written word," or "text." In many languages, a strong correspondence exists
between speech and text. In English, for example, letters and groups of letters correspond (more or

less) to spoken sounds.

For people who can't hear or speak, another code has been devised to help in face-to-face
communication. This is sign language, in which the hands and arms form movements and gestures that
convey individual letters of words or whole words and concepts. For those who can't see, the written
word can be replaced with Braille, which uses a system of raised dots that correspond to letters,
groups of letters, and whole words. When spoken words must be transcribed into text very quickly,
stenography or shorthand is useful.

We use a variety of different codes for communicating among ourselves because some codes are
more convenient than others. For example, the code of the spoken word can't be stored on paper, so
the code of the written word is used instead. Silently exchanging information across a distance in the
dark isn't possible with speech or paper. Hence, Morse code is a convenient alternative. A code is
useful if it serves a purpose that no other code can.

As we shall see, various types of codes are also used in computers to store and communicate
numbers, sounds, music, pictures, and movies. Computers can't deal with human codes directly
because computers can't duplicate the ways in which human beings use their eyes, ears, mouths, and
fingers. Yet one of the recent trends in computer technology has been to enable our desktop personal
computers to capture, store, manipulate, and render all types of information used in human
communication, be it visual (text and pictures), aural (spoken words, sounds, and music), or a
combination of both (animations and movies). All of these types of information require their own
codes, just as speech requires one set of human organs (mouths and ears) while writing and reading
require others (hands and eyes).

Even the table of Morse code shown on page 4 is itself a code of sorts. The table shows that each
letter is represented by a series of dots and dashes. Yet we can't actually send dots and dashes.
Instead, the dots and dashes correspond to blinks.

When sending Morse code with a flashlight, you turn the flashlight switch on and off very quickly (a
fast blink) for a dot. You leave the flashlight turned on somewhat longer (a slower on-off blink) for a
dash. To send an A, for example, you turn the flashlight on and off very quickly and then on and off at
a lesser speed. You pause before sending the next character. By convention, the length of a dash
should be about three times that of a dot. For example, if a dot is one second long, a dash is three
seconds long. (In reality, Morse code is transmitted much faster than that.) The receiver sees the short
blink and the long blink and knows it's an A.

Pauses between the dots and dashes of Morse code are crucial. When you send an A, for example, the
flashlight should be off between the dot and the dash for a period of time equal to about one dot. (If
the dot is one second long, the gap between dots and dashes is also a second.) Letters in the same
word are separated by longer pauses equal to about the length of one dash (or three seconds if that's
the length of a dash). For example, here's the Morse code for "hello," illustrating the pauses between

the letters:
YL X i Y I I § O §

Words are separated by an off period of about two dashes (six seconds if a dash is three seconds

long). Here's the code for "hi there":
2000 o0 == 0000 & o N ¢ ®

The lengths of time that the flashlight remains on and off aren't fixed. They're all relative to the length

of a dot, which depends on how fast the flashlight switch can be triggered and also how quickly a

Morse code sender can remember the code for a particular letter. A fast sender's dash may be the

same length as a slow sender's dot. This little problem could make reading a Morse code message
tough, but after a letter or two, the receiver can usually figure out what's a dot and what's a dash.

At first, the definition of Morse code—and by definition I mean the correspondence of various
sequences of dots and dashes to the letters of the alphabet—appears as random as the layout of a
typewriter. On closer inspection, however, this is not entirely so. The simpler and shorter codes are
assigned to the more frequently used letters of the alphabet, such as E and T. Scrabble players and
Wheel of Fortune fans might notice this right away. The less common letters, such as Q and Z (which
get you 10 points in Scrabble), have longer codes.

Almost everyone knows a little Morse code. Three dots, three dashes, and three dots represent SOS,
the international distress signal. SOS isn't an abbreviation for anything—it's simply an easy-to-
remember Morse code sequence. During the Second World War, the British Broadcasting
Corporation prefaced some radio broadcasts with the beginning of Beethoven's Fifth Symphony—
BAH, BAH, BAH, BAHMMMMM—which Ludwig didn't know at the time he composed the music is
the Morse code V, for Victory.

One drawback of Morse code is that it makes no differentiation between uppercase and lowercase
letters. But in addition to representing letters, Morse code also includes codes for numbers by using a
series of five dots and dashes:

[t
-]
|
|
[]
.
.

‘_% . — H -

4 - {'} I — —

e |
-
-

=

These codes, at least, are a little more orderly than the letter codes. Most punctuation marks use five,
six, or seven dots and dashes:

Additional codes are defined for accented letters of some European languages and as shorthand
sequences for special purposes. The SOS code is one such shorthand sequence: It's supposed to be
sent continuously with only a one-dot pause between the three letters.

You'll find that it's much easier for you and your friend to send Morse code if you have a flashlight
made specifically for this purpose. In addition to the normal on-off slider switch, these flashlights
also include a pushbutton switch that you simply press and release to turn the flashlight on and off.
With some practice, you might be able to achieve a sending and receiving speed of 5 or 10 words per
minute—still much slower than speech (which is somewhere in the 100-words-per-minute range), but
surely adequate.

When finally you and your best friend memorize Morse code (for that's the only way you can become
proficient at sending and receiving it), you can also use it vocally as a substitute for normal speech.
For maximum speed, you pronounce a dot as dih (or dit for the last dot of a letter) and a dash as dah.
In the same way that Morse code reduces written language to dots and dashes, the spoken version of
the code reduces speech to just two vowel sounds.

The key word here is two. Two types of blinks, two vowel sounds, two different anything, really, can
with suitable combinations convey all types of information.

Chapter 2. Codes and Combinations

Morse code was invented by Samuel Finley Breese Morse (1791-1872), whom we shall meet more
properly later in this book. The invention of Morse code goes hand in hand with the invention of the
telegraph, which we'll also examine in more detail. Just as Morse code provides a good introduction
to the nature of codes, the telegraph provides a good introduction to the hardware of the computer.

Most people find Morse code easier to send than to receive. Even if you don't have Morse code
memorized, you can simply use this table, conveniently arranged in alphabetical order:

A .-] * - S5 ser

B ——ee K - i -

C — L y— U »om—
D — M == \Y tonmm
E . N — W o=
I - 0 —_— X ———
G - P " Y ——
H Q —— 7 ———
| . R —

Receiving Morse code and translating it back into words is considerably harder and more time
consuming than sending because you must work backward to figure out the letter that corresponds to a
particular coded sequence of dots and dashes. For example, if you receive a dash-dot-dash-dash, you
have to scan through the table letter by letter before you finally discover that the code is the letter Y.

The problem is that we have a table that provides this translation:
Alphabetical letter — Morse code dots and dashes

But we don't have a table that lets us go backward:

Morse code dots and dashes — Alphabetical letter

In the early stages of learning Morse code, such a table would certainly be convenient. But it's not at
all obvious how we could construct it. There's nothing in those dots and dashes that we can put into

alphabetical order.

So let's forget about alphabetical order. Perhaps a better approach to organizing the codes might be to
group them depending on how many dots and dashes they have. For example, a Morse code sequence
that contains either one dot or one dash can represent only two letters, which are E and T:

E

- T

A combination of exactly two dots or dashes gives us four more letters—I, A, N, and M:

|

A

A pattern of three dots or dashes gives us eight more letters:

LR

5

D

U

K

R

G

W

O

And finally (if we want to stop this exercise before dealing with numbers and punctuation marks),
sequences of four dots and dashes give us 16 more characters:

H - B

cosmm \% —— X
oo F —— @
o U Spp— Y
— L - Z
- A ——— Q
- P - O
——— J ——— S

Taken together, these four tables contain 2 plus 4 plus 8 plus 16 codes for a total of 30 letters, 4 more
than are needed for the 26 letters of the Latin alphabet. For this reason, you'll notice that 4 of the

codes in the last table are for accented letters.

These four tables might help you translate with greater ease when someone is sending you Morse
code. After you receive a code for a particular letter, you know how many dots and dashes it has, and
you can at least go to the right table to look it up. Each table is organized so that you find the all-dots
code in the upper left and the all-dashes code in the lower right.

Can you see a pattern in the size of the four tables? Notice that each table has twice as many codes as
the table before it. This makes sense: Each table has all the codes in the previous table followed by a
dot, and all the codes in the previous table followed by a dash.

We can summarize this interesting trend this way:

Number of Dots and Dashes | Number of Codes

1

2

3

2

4

8

16

Each of the four tables has twice as many codes as the table before it, so if the first table has 2 codes,
the second table has 2 x 2 codes, and the third table has 2 x 2 x 2 codes. Here's another way to show
that:

Number of Dots and Dashes | Number of Codes

1 2

2 2x2

3 2x2x2

4 2x2x2x?2

Of course, once we have a number multiplied by itself, we can start using exponents to show powers.
For example, 2 x 2 x 2 x 2 can be written as 2* (2 to the 4th power). The numbers 2, 4, 8, and 16 are
all powers of 2 because you can calculate them by multiplying 2 by itself. So our summary can also
be shown like this:

Number of Dots and Dashes | Number of Codes

1 2!
2 22
3 23
4 24

This table has become very simple. The number of codes is simply 2 to the power of the number of
dots and dashes. We might summarize the table data in this simple formula:

number of codes = 2nurnber of dots and dashes

Powers of 2 tend to show up a lot in codes, and we'll see another example in the next chapter.

To make the process of decoding Morse code even easier, we might want to draw something like the
big treelike table shown here.

Pat=s
Qi
o=
S

This table shows the letters that result from each particular consecutive sequence of dots and dashes.
To decode a particular sequence, follow the arrows from left to right. For example, suppose you want
to know which letter corresponds to the code dot-dash-dot. Begin at the left and choose the dot; then
continue moving right along the arrows and choose the dash and then another dot. The letter is R,
shown next to the last dot.

If you think about it, constructing such a table was probably necessary for defining Morse code in the
first place. First, it ensures that you don't make the dumb mistake of using the same code for two
different letters! Second, you're assured of using all the possible codes without making the sequences
of dots and dashes unnecessarily long.

At the risk of extending this table beyond the limits of the printed page, we could continue it for codes
of five dots and dashes and more. A sequence of exactly five dots and dashes gives us 32
(2x2x2x2x2, or 2°) additional codes. Normally that would be enough for the 10 numbers and the 16
punctuation symbols defined in Morse code, and indeed the numbers are encoded with five dots and
dashes. But many of the other codes that use a sequence of five dots and dashes represent accented
letters rather than punctuation marks.

To include all the punctuation marks, the system must be expanded to six dots and dashes, which
gives us 64 (2x2x2x2x2x2, or 2°) additional codes for a grand total of 2+4+8+16+32+64, or 126,
characters. That's overkill for Morse code, which leaves many of these longer codes "undefined." The
word undefined used in this context refers to a code that doesn't stand for anything. If you were
receiving Morse code and you got an undefined code, you could be pretty sure that somebody made a
mistake.

Because we were clever enough to develop this little formula,

number of codes = 2number of dots and dashes

we could continue figuring out how many codes we get from using longer sequences of dots and

dashes:

Number of Dots and Dashes | Number of Codes

1

9

10

24 =16
2°=32
=64
27 =128
28 =256
29 =512

210 = 1024

Fortunately, we don't have to actually write out all the possible codes to determine how many there
would be. All we have to do is multiply 2 by itself over and over again.

Morse code is said to be a binary (literally meaning two by two) code because the components of the
code consist of only two things—a dot and a dash. That's similar to a coin, which can land only on the
head side or the tail side. Binary objects (such as coins) and binary codes (such as Morse code) are

always described by powers of two.

What we're doing by analyzing binary codes is a simple exercise in the branch of mathematics known
as combinatorics or combinatorial analysis. Traditionally, combinatorial analysis is used most often
in the fields of probability and statistics because it involves determining the number of ways that
things, like coins and dice, can be combined. But it also helps us understand how codes can be put

together and taken apart.

Chapter 3. Braille and Binary Codes

Samuel Morse wasn't the first person to successfully translate the letters of written language to an
interpretable code. Nor was he the first person to be remembered more as the name of his code than
as himself. That honor must go to a blind French teenager born some 18 years after Samuel Morse but
who made his mark much more precociously. Little is known of his life, but what is known makes a
compelling story.

Louis Braille was born in 1809 in Coupvray, France, just 25 miles east of Paris. His father was a
harness maker. At the age of three—an age when young boys shouldn't be playing in their fathers'
workshops—he accidentally stuck a pointed tool in his eye. The wound became infected, and the
infection spread to his other eye, leaving him totally blind. Normally he would have been doomed to
a life of ignorance and poverty (as most blind people were in those days), but young Louis's
intelligence and desire to learn were soon recognized. Through the intervention of the village priest
and a schoolteacher, he first attended school in the village with the other children and at the age of 10

One major obstacle in the education of the blind is, of course, their inability to read printed books.
Valentin Haiiy (1745—-1822), the founder of the Paris school, had invented a system of raised letters
on paper that could be read by touch. But this system was very difficult to use, and only a few books
had been produced using this method.

The sighted Haiiy was stuck in a paradigm. To him, an A was an A was an A, and the letter A must
look (or feel) like an A. (If given a flashlight to communicate, he might have tried drawing letters in
the air as we did before we discovered it didn't work very well.) Haily probably didn't realize that a
type of code quite different from the printed alphabet might be more appropriate for sightless people.

The origins of an alternative type of code came from an unexpected source. Charles Barbier, a
captain of the French army, had by 1819 devised a system of writing he called écriture nocturne, or
"night writing." This system used a pattern of raised dots and dashes on heavy paper and was
intended for use by soldiers in passing notes to each other in the dark when quiet was necessary. The
soldiers were able to poke these dots and dashes into the back of the paper using an awl-like stylus.
The raised dots could then be read with the fingers.

The problem with Barbier's system is that it was quite complex. Rather than using patterns of dots and
dashes that corresponded to letters of the alphabet, Barbier devised patterns that corresponded to
sounds, often requiring many codes for a single word. The system worked fine for short messages in
the field but was distinctly inadequate for longer texts, let alone entire books.

Louis Braille became familiar with Barbier's system at the age of 12. He liked the use of raised dots,
not only because it proved easy to read with the fingers but also because it was easy to write. A
student in the classroom equipped with paper and a stylus could actually take notes and read them
back. Louis Braille diligently tried to improve the system and within three years (at the age of 15) had
come up with his own, the basics of which are still used today. For many years, the system was
known only within the school, but it gradually made its way to the rest of the world. In 1835, Louis
Braille contracted tuberculosis, which would eventually kill him shortly after his 43rd birthday in
1852.

Today, enhanced versions of the Braille system compete with tape-recorded books for providing the
blind with access to the written word, but Braille still remains an invaluable system and the only way
to read for people who are both blind and deaf. In recent years, Braille has become more familiar in
the public arena as elevators and automatic teller machines are made more accessible to the blind.

What we're going to do in this chapter is dissect Braille code and see how it works. We don't have to
actually learn Braille or memorize anything. We just want some insight into the nature of codes.

In Braille, every symbol used in normal written language—specifically, letters, numbers, and
punctuation marks—is encoded as one or more raised dots within a two-by-three cell. The dots of the
cell are commonly numbered 1 through 6:

1 O 0O 4
200 s
30 0 s
In modern-day use, special typewriters or embossers punch the Braille dots into the paper.

Because embossing just a couple pages of this book in Braille would be prohibitively expensive, I've
used a notation common for showing Braille on the printed page. In this notation, all six dots in the
cell are shown. Large dots indicate the parts of the cell where the paper is raised. Small dots indicate
the parts of the cell that are flat. For example, in the Braille character dots 1, 3, and 5 are raised and

dots 2, 4, and 6 are not.

® -

.0

e -
What should be interesting to us at this point is that the dots are binary. A particular dot is either flat
or raised. That means we can apply what we've learned about Morse code and combinatorial analysis
to Braille. We know that there are 6 dots and that each dot can be either flat or raised, so the total

number of combinations of 6 flat and raised dots is 2 x2 x2 x2 x2 x 2, or 2%, or 64.

Thus, the system of Braille is capable of representing 64 unique codes. Here they are—all 64
possible Braille codes:

« il . o - o

- - .] Y

. . @ - @
» e ™ e .- e .- e
. - .. - .

- - il -

. -8 - .

» . .e e .- . e e

d - 3 L] L]
» ae .- 'Y 'E ee .- 'Y
» [.e e - . e e
. s s s : @ ' - 8
-- . w ... -. ...
. = . » a. a.. . = . » a‘ a..
®- .- .- .- e .e e .
.- | B | .- [X] [] ae L I [X]
Y . -. ... T " . -. ...
.- .- .- .- 'Y ee .e .
- - . . « il - - » - « il
.- .- (Y] (T .- .- (1] (T
.- .- .- .- . .o ee e
.- [¥ B L X] L I a8 [B L X
.- .- [X] [X | .- .- [X] [X]
.- .- » - [I [X] ae [}] [X]

If we find fewer than 64 codes used in Braille, we should question why some of the 64 possible
codes aren't being used. If we find more than 64 codes used in Braille, we should question either our
sanity or fundamental truths of mathematics, such as 2 plus 2 equaling 4.

To begin dissecting the code of Braille, let's look at the basic lowercase alphabet:

.- .. .- T e e - ae

a b C d e f g h i]

L L 3] L N] L L X L 1] L L] - .
L] L » L .- L 1] L X] L] 28

- ® - ™ .- ™ .- ™]

k I m n 0 p q r $ t

. .- ee se ..

- [L R o

L X e *e ae .

u v X y z

For example, the phrase "you and me" in Braille looks like this:

Notice that the cells for each letter within a word are separated by a little bit of space; a larger space
(essentially a cell with no raised dots) is used between words.

This is the basis of Braille as Louis Braille devised it, or at least as it applies to the letters of the
Latin alphabet. Louis Braille also devised codes for letters with accent marks, common in French.
Notice that there's no code for w, which isn't used in classical French. (Don't worry. The letter will
show up eventually.) At this point, only 25 of the 64 possible codes have been accounted for.

Upon close examination, you'll discover that the three rows of Braille illustrated above show a
pattern. The first row (letters a through j) uses only the top four spots in the cell—dots 1, 2, 4, and 5.
The second row duplicates the first row except that dot 3 is also raised. The third row is the same

except that dots 3 and 6 are raised.

Since the days of Louis Braille, the Braille code has been expanded in various ways. Currently the
system used most often in published material in English is called Grade 2 Braille. Grade 2 Braille
uses many contractions in order to save trees and to speed reading. For example, if letter codes
appear by themselves, they stand for common words. The following three rows (including a
"completed" third row) show these word codes:

L L e L L] L L 2 L1 L - + @
L .- i L - @ L L A] LY] LR L 1]
(none) but can do every from go have (none) just
e - L [X] L 1] L L 3] L N] L] L LN

" . L « " = i@ - B .- ae e L L]]

L .- L L L & - 8 - L L L
knowledge like more not (none) people quite rather SO that
L L X] L X] L L 3] L X] L . +

.. L L - - .- L N] L X] L N L 7]

L X L X L X | L X] L X] [7] L R L X] L X L 1]
us very it you as and for of the with

Thus, the phrase "you and me" can be written in Grade 2 Braille as this:

So far, I've described 31 codes—the no-raised-dots space between words and the 3 rows of 10 codes
for letters and words. We're still not close to the 64 codes that are theoretically available. In Grade 2
Braille, as we shall see, nothing is wasted.

First, we can use the codes for letters a through j combined with a raised dot 6. These are used
mostly for contractions of letters within words and also include w and another word abbreviation:

L @ « @ LI L L L L LR]

-8 .. + . - @ - - . . -8 . .

ch gh sh th wh ed er ou ow W
(or “will™)

For example, the word "about" can be written in Grade 2 Braille this way:

e @ B -8
s B B8 99
. -

Second, we can take the codes for letters a through j and "lower" them to use only dots 2, 3, 5, and 6.
These codes are used for some punctuation marks and contractions, depending on context:

.-
. -
ea bb o dis en to gg his in was
; : - ! () 7

The first four of these codes are the comma, semicolon, colon, and period. Notice that the same code
is used for both left and right parentheses but that two different codes are used for open and closed
quotation marks.

We're up to 51 codes so far. The following 6 codes use various unused combinations of dots 3, 4, 5,

and 6 to represent contractions and some additional punctuation:

. . - - . :
R e - - . - Stal

L L X e .- .- a8
st INg ble ar ' com
/ # -

The code for "ble" is very important because when it's not part of a word, it means that the codes that
follow should be interpreted as numbers. These number codes are the same as those for letters a
through j:

1 2 3 4 5 6 7 8 9 0

Thus, this sequence of codes means the number 256.
R A
BB s s e

If you've been keeping track, we need 7 more codes to reach the maximum of 64. Here they are:

-‘ --
' e] r . 8 . s] ..
@ - - .] N]

The first (a raised dot 4) is used as an accent indicator. The others are used as prefixes for some
contractions and also for some other purposes: When dots 4 and 6 are raised (the fifth code in this
row), the code is a decimal point in numbers or an emphasis indicator, depending on context. When
dots 5 and 6 are raised, the code is a letter indicator that counterbalances a number indicator.

And finally (if you've been wondering how Braille encodes capital letters) we have dot 6—the
capital indicator. This signals that the letter that follows is uppercase. For example, we can write the

name of the original creator of this system as
S RN Y Y) SN O T R
cs B B8 B 8- e B B8 - B
vl B @ -+ B el ¢+ B e s e s

This is a capital indicator, the letter 1, the contraction ou, the letters i and s, a space, another capital
indicator, and the letters b, 1, a, i, 1, 1, and e. (In actual use, the name might be abbreviated even more
by eliminating the last two letters, which aren't pronounced.)

In summary, we've seen how six binary elements (the dots) yield 64 possible codes and no more. It
just so happens that many of these 64 codes perform double duty depending on their context. Of
particular interest is the number indicator and the letter indicator that undoes the number indicator.
These codes alter the meaning of the codes that follow them—from letters to numbers and from
numbers back to letters. Codes such as these are often called precedence, or shift, codes. They alter
the meaning of all subsequent codes until the shift is undone.

The capital indicator means that the following letter (and only the following letter) should be
uppercase rather than lowercase. A code such as this is known as an escape code. Escape codes let
you "escape" from the humdrum, routine interpretation of a sequence of codes and move to a new
interpretation. As we'll see in later chapters, shift codes and escape codes are common when written
languages are represented by binary codes.

Chapter 4. Anatomy of a Flashlight

Flashlights are useful for numerous tasks, of which reading under the covers and sending coded
messages are only the two most obvious. The common household flashlight can also take center stage
in an educational show-and-tell of the magical stuff known as electricity.

Electricity is an amazing phenomenon, managing to be pervasively useful while remaining largely
mysterious, even to people who pretend to know how it works. But I'm afraid we must wrestle with
electricity anyway. Fortunately, we need to understand only a few basic concepts to comprehend how
it's used inside computers.

The flashlight is certainly one of the simpler electrical appliances found in most homes. Disassemble
a typical flashlight, and you'll find it consists of a couple of batteries, a bulb, a switch, some metal
pieces, and a plastic case to hold everything together.

You can make your own no-frills flashlight by disposing of everything except the batteries and the
lightbulb. You'll also need some short pieces of insulated wire (with the insulation stripped from the
ends) and enough hands to hold everything together.

Notice the two loose ends of the wires at the right of the diagram. That's our switch. Assuming that the
batteries are good and the bulb isn't burned out, touching these loose ends together will turn on the

light.

What we've constructed here is a simple electrical circuit, and the first thing to notice is that a circuit
is a circle. The lightbulb will be lit only if the path from the batteries to the wire to the bulb to the
switch and back to the batteries is continuous. Any break in this circuit will cause the bulb to go out.
The purpose of the switch is to control this process.

The circular nature of the electrical circuit suggests that something is moving around the circuit,
perhaps like water flowing through pipes. The "water and pipes" analogy is quite common in
explanations of how electricity works, but eventually it breaks down, as all analogies must.
Electricity is like nothing else in this universe, and we must confront it on its own terms.

The prevailing scientific wisdom regarding the workings of electricity is called the electron theory,
which says that electricity derives from the movement of electrons.

As we know, all matter—the stuff that we can see and feel (usually)—is made up of extremely small
things called atoms. Every atom is composed of three types of particles; these are called neutrons,
protons, and electrons. You can picture an atom as a little solar system, with the neutrons and protons
bound into a nucleus and the electrons spinning around the nucleus like planets around a sun:

I should mention that this isn't exactly what you'd see if you were able to get a microscope powerful
enough to see actual atoms, but it works as a convenient model.

The atom shown on the preceding page has 3 electrons, 3 protons, and 4 neutrons, which means that
it's an atom of lithium. Lithium is one of 112 known elements, each of which has a particular atomic
number ranging from 1 to 112. The atomic number of an element indicates the number of protons in
the nucleus of each of the element's atoms and also (usually) the number of electrons in each atom.
The atomic number of lithium is 3.

Atoms can chemically combine with other atoms to form molecules. Molecules usually have very
different properties from the atoms they comprise. For example, water is composed of molecules that
consist of two atoms of hydrogen and one atom of oxygen (hence, H,O). Obviously water is

appreciably different from either hydrogen or oxygen. Likewise, the molecules of table salt consist of
an atom of sodium and an atom of chlorine, neither of which would be particularly appetizing on
French fries.

Hydrogen, oxygen, sodium, and chlorine are all elements. Water and salt are called compounds. Salt
water, however, is a mixture rather than a compound because the water and the salt maintain their
own properties.

The number of electrons in an atom is usually the same as the number of protons. But in certain
circumstances, electrons can be dislodged from atoms. That's how electricity happens.

The words electron and electricity both derive from the ancient Greek word nAektpov (elektron),
which you might expect means something like "little tiny invisible thing." But no—nAektpov is
actually the Greek word for "amber," which is the glasslike hardened sap of trees. The reason for this
unlikely derivation is that the ancient Greeks experimented with rubbing amber with wool, which
produces something we now call static electricity. Rubbing wool on amber causes the wool to pick
up electrons from the amber. The wool winds up with more electrons than protons, and the amber
ends up with fewer electrons than protons. In more modern experiments, carpeting picks up electrons
from the soles of our shoes.

Protons and electrons have a characteristic called charge. Protons are said to have a positive (+)
charge and electrons are said to have a negative (—) charge. Neutrons are neutral and have no charge.
But even though we use plus and minus signs to denote protons and electrons, the symbols don't really

mean plus and minus in the arithmetical sense or that protons have something that electrons don't. The
use of these symbols just means that protons and electrons are opposite in some way. This opposite
characteristic manifests itself in how protons and electrons relate to each other.

Protons and electrons are happiest and most stable when they exist together in equal numbers. An
imbalance of protons and electrons will attempt to correct itself. When the carpet picks up electrons
from your shoes, eventually everything gets evened out when you touch something and feel a spark.
That spark of static electricity is the movement of electrons by a rather circuitous route from the
carpet through your body back to your shoes.

Another way to describe the relationship between protons and electrons is to note that opposite
charges attract and like charges repel. But this isn't what we might assume by looking at the diagram
of the atom. It looks like the protons huddled together in the nucleus are attracting each other. The
protons are held together by something stronger than the repulsion of like charges, and that something
is called the strong force. Messing around with the strong force involves splitting the nucleus, which
produces nuclear energy. In this chapter, we're merely fooling around with the electrons to get
electricity.

Static electricity isn't limited to the little sparks produced by fingers touching doorknobs. During
storms, the bottoms of clouds accumulate electrons while the tops of clouds lose electrons;
eventually, the imbalance is evened out with a stroke of lightning. Lightning is a lot of electrons
moving very quickly from one spot to another.

The electricity in the flashlight circuit is obviously much better mannered than a spark or a lightning
bolt. The light burns steadily and continuously because the electrons aren't just jumping from one
place to another. As one atom in the circuit loses an electron to another atom nearby, it grabs another
electron from an adjacent atom, which grabs an electron from another adjacent atom, and so on. The
electricity in the circuit is the passage of electrons from atom to atom.

This doesn't happen all by itself. We can't just wire up any old bunch of stuff and expect some
electricity to happen. We need something to precipitate the movement of electrons around the circuit.
Looking back at our diagram of the no-frills flashlight, we can safely assume that the thing that begins
the movement of electricity is not the wires and not the lightbulb, so it's probably the batteries.

Almost everybody knows a few things about the types of batteries used in flashlights:
m They're tubular in shape and come in different sizes, such as D, C, A, AA, and AAA.
m Regardless of the battery's size, they're all labeled "1.5 volts."

= One end of the battery is flat and is labeled with a minus sign (-); the other end has a little
protrusion and is labeled with a plus sign (+).

m [f you want your appliance to work right, it's a good idea to install the batteries correctly with the
plus signs facing the right way.

m Batteries wear out eventually. Sometimes they can be recharged, sometimes not.
= And finally, we suspect that in some weird way, batteries produce electricity.

In all batteries, chemical reactions take place, which means that some molecules break down into
other molecules, or molecules combine to form new molecules. The chemicals in batteries are chosen
so that the reactions between them generate spare electrons on the side of the battery marked with a

minus sign (called the negative terminal, or anode) and demand extra electrons on the other side of
the battery (the positive terminal, or cathode). In this way, chemical energy is converted to electrical
energy.

The chemical reaction can't proceed unless there's some way that the extra electrons can be taken
away from the negative terminal of the battery and delivered back to the positive terminal. So if the
battery isn't connected to anything, nothing much happens. (Actually the chemical reactions still take
place, but very slowly.) The reactions take place only if an electrical circuit is present to take
electrons away from the negative side and supply electrons to the positive side. The electrons travel
around this circuit in a counterclockwise direction:

In this book, the color red is used to indicate that electricity is flowing through the wires.

Electrons from the chemicals in the batteries might not so freely mingle with the electrons in the
copper wires if not for a simple fact: All electrons, wherever they're found, are identical. There's
nothing that distinguishes a copper electron from any other electron.

Notice that both batteries are facing the same direction. The positive end of the bottom battery takes
electrons from the negative end of the top battery. It's as if the two batteries have been combined into
one bigger battery with a positive terminal at one end and a negative terminal at the other end. The
combined battery is 3 volts rather than 1.5 volts.

If we turn one of the batteries upside down, the circuit won't work:

The two positive ends of the battery need electrons for the chemical reactions, but there's no way
electrons can get to them because they're attached to each other. If the two positive ends of the battery
are connected, the two negative ends should be also:

This works. The batteries are said to be connected in parallel rather than in series as shown earlier.
The combined voltage is 1.5 volts, which is the same as the voltage of each of the batteries. The light
will probably still glow, but not as brightly as with two batteries in series. But the batteries will last
twice as long.

We normally like to think of a battery as providing electricity to a circuit. But we've seen that we can
also think of a circuit as providing a way for a battery's chemical reactions to take place. The circuit
takes electrons away from the negative end of the battery and delivers them to the positive end of the
battery. The reactions in the battery proceed until all the chemicals are exhausted, at which time you
throw away the battery or recharge it.

From the negative end of the battery to the positive end of the battery, the electrons flow through the
wires and the lightbulb. But why do we need the wires? Can't the electricity just flow through the air?
Well, yes and no. Yes, electricity can flow through air (particularly wet air), or else we wouldn't see
lightning. But electricity doesn't flow through air very readily.

Some substances are significantly better than others for carrying electricity. The ability of an element

to carry electricity is related to its subatomic structure. Electrons orbit the nucleus in various levels,
called shells. An atom that has just one electron in its outer shell can readily give up that electron,
which is what's necessary to carry electricity. These substances are conducive to carrying electricity
and thus are said to be conductors. The best conductors are copper, silver, and gold. It's no
coincidence that these three elements are found in the same column of the periodic table. Copper is
the most common substance for making wires.

The opposite of conductance is resistance. Some substances are more resistant to the passage of
electricity than others, and these are known as resistors. If a substance has a very high resistance—
meaning that it doesn't conduct electricity much at all—it's known as an insulator. Rubber and plastic
are good insulators, which is why these substances are often used to coat wires. Cloth and wood are
also good insulators as is dry air. Just about anything will conduct electricity, however, if the voltage

is high enough.
Copper has a very low resistance, but it still has some resistance. The longer a wire, the higher the

resistance it has. If you tried wiring a flashlight with wires that were miles long, the resistance in the
wires would be so high that the flashlight wouldn't work.

The thicker a wire, the lower the resistance it has. This may be somewhat counterintuitive. You might
imagine that a thick wire requires much more electricity to "fill it up." But actually the thickness of the
wire makes available many more electrons to move through the wire.

I've mentioned voltage but haven't defined it. What does it mean when a battery has 1.5 volts?
Actually, voltage—named after Count Alessandro Volta (1745-1827), who invented the first battery
in 1800—is one of the more difficult concepts of elementary electricity. Voltage refers to a potential
for doing work. Voltage exists whether or not something is hooked up to a battery.

Consider a brick. Sitting on the floor, the brick has very little potential. Held in your hand four feet
above the floor, the brick has more potential. All you need do to realize this potential is drop the
brick. Held in your hand at the top of a tall building, the brick has much more potential. In all three
cases, you're holding the brick and it's not doing anything, but the potential is different.

A much easier concept in electricity is the notion of current. Current is related to the number of
electrons actually zipping around the circuit. Current is measured in amperes, named after André
Marie Ampere (1775-1836), but everybody calls them amps, as in "a 10-amp fuse." To get one amp
of current, you need 6,240,000,000,000,000,000 electrons flowing past a particular point per second.

The water-and-pipes analogy helps out here: Current is similar to the amount of water flowing
through a pipe. Voltage is similar to the water pressure. Resistance is similar to the width of a pipe
—the smaller the pipe, the larger the resistance. So the more water pressure you have, the more water
that flows through the pipe. The smaller the pipe, the less water that flows through it. The amount of
water flowing through a pipe (the current) is directly proportional to the water pressure (the voltage)
and inversely proportional to the skinniness of the pipe (the resistance).

In electricity, you can calculate how much current is flowing through a circuit if you know the voltage
and the resistance. Resistance—the tendency of a substance to impede the flow of electrons—is
measured in ohms, named after Georg Simon Ohm (1789-1854), who also proposed the famous
Ohm's Law. The law states

I=E/R

where I is traditionally used to represent current in amperes, E is used to represent voltage (it stands
for electromotive force), and R is resistance.

For example, let's look at a battery that's just sitting around not connected to anything;

The voltage E is 1.5. That's a potential for doing work. But because the positive and negative
terminals are connected solely by air, the resistance (the symbol R) is very, very, very high, which
means the current (I) equals 1.5 volts divided by a large number. This means that the current is just
about zero.

Now let's connect the positive and negative terminals with a short piece of copper wire (and from
here on, the insulation on the wires won't be shown):

This is known as a short circuit. The voltage is still 1.5, but the resistance is now very, very low.
The current is 1.5 volts divided by a very small number. This means that the current will be very,
very high. Lots and lots of electrons will be flowing through the wire. In reality, the actual current
will be limited by the physical size of the battery. The battery will probably not be able to deliver
such a high current, and the voltage will drop below 1.5 volts. If the battery is big enough, the wire
will get hot because the electrical energy is being converted to heat. If the wire gets very hot, it will
actually glow and might even melt.

Most circuits are somewhere between these two extremes. We can symbolize them like so:

The squiggly line is recognizable to electrical engineers as the symbol for a resistor. Here it means
that the circuit has a resistance that is neither very low nor very high.

If a wire has a low resistance, it can get hot and start to glow. This is how an incandescent lightbulb
works. The lightbulb is commonly credited to America's most famous inventor, Thomas Alva Edison
(1847-1931), but the concepts were well known at the time he patented the lightbulb (1879) and
many other inventors also worked on the problem.

Inside a lightbulb is a thin wire called a filament, which is commonly made of tungsten. One end of
the filament is connected to the tip at the bottom of the base; the other end of the filament is connected
to the side of the metal base, separated from the tip by an insulator. The resistance of the wire causes
it to heat up. In open air, the tungsten would get hot enough to burn, but in the vacuum of the lightbulb,
the tungsten glows and gives off light.

Most common flashlights have two batteries connected in series. The total voltage is 3.0 volts. A
lightbulb of the type commonly used in a flashlight has a resistance of about 4 ohms. Thus, the current
is 3 volts divided by 4 ohms, or 0.75 ampere, which can also be expressed as 750 milliamperes. This
means that 4,680,000,000,000,000,000 electrons are flowing through the lightbulb every second.

(A brief reality check: If you actually try to measure the resistance of a flashlight lightbulb with an
ohmmeter, you'll get a reading much lower than 4 ohms. The resistance of tungsten is dependent upon
its temperature, and the resistance gets higher as the bulb heats up.)

As you may know, lightbulbs you buy for your home are labeled with a certain wattage. The watt is
named after James Watt (1736-1819), who is best known for his work on the steam engine. The watt
is a measurement of power (P) and can be calculated as

P=ExI

The 3 volts and 0.75 amp of our flashlight indicate that we're dealing with a 2.25-watt lightbulb.

Your home might be lit by 100-watt lightbulbs. These are designed for the 120 volts of your home.
Thus, the current that flows through them is equal to 100 watts divided by 120 volts, or about 0.83
ampere. Hence, the resistance of a 100-watt lightbulb is 120 volts divided by 0.83 ampere, or 144
ohms.

So we've seemingly analyzed everything about the flashlight—the batteries, the wires, and the
lightbulb. But we've forgotten the most important part!

Yes, the switch. The switch controls whether electricity is flowing in the circuit or not. When a
switch allows electricity to flow, it is said to be on, or closed. An off, or open, switch doesn't allow
electricity to flow. (The way we use the words closed and open for switches is opposite to the way
we use them for a door. A closed door prevents anything from passing through it; a closed switch
allows electricity to flow.)

Either the switched is closed or it's open. Either current flows or it doesn't. Either the lightbulb lights
up or it doesn't. Like the binary codes invented by Morse and Braille, this simple flashlight is either
on or off. There's no in-between. This similarity between binary codes and simple electrical circuits
is going to prove very useful in the chapters ahead.

Chapter 5. Seeing Around Corners

You're twelve years old. One horrible day your best friend's family moves to another town. You
speak to your friend on the telephone now and then, but telephone conversations just aren't the same
as those late-night sessions with the flashlights blinking out Morse code. Your second-best friend,
who lives in the house next door to yours, eventually becomes your new best friend. It's time to teach
your new best friend some Morse code and get the late-night flashlights blinking again.

The problem is, your new best friend's bedroom window doesn't face your bedroom window. The
houses are side by side, but the bedroom windows face the same direction. Unless you figure out a
way to rig up a few mirrors outside, the flashlights are now inadequate for after-dark communication.

Or are they?

Maybe you have learned something about electricity by this time, so you decide to make your own
flashlights out of batteries, lightbulbs, switches, and wires. In the first experiment, you wire up the
batteries and switch in your bedroom. Two wires go out your window, across a fence, and into your
friend's bedroom, where they're connected to a lightbulb:

ol

o+

\

Your Your friend’s
house house

Although I'm showing only one battery, you might actually be using two. In this and future diagrams,

this will be an off (or open) switch:
—0/-—

and this will be the switch when it's on (or closed):
—_— % ——

The flashlight in this chapter works the same way as the one illustrated in the previous chapter,
although the wires connecting the components for this chapter's flashlight are a bit longer. When you
close the switch at your end, the light goes on at your friend's end:

l

LS

Your Your friend’s
R house

Now you can send messages using Morse code.

Once you have one flashlight working, you can wire another long-distance flashlight so that your
friend can send messages to you:

YO L_9g

vy

Your Your friend’s
house house

Congratulations! You have just rigged up a bidirectional telegraph system. You'll notice that these are
two identical circuits that are entirely independent of and unconnected to each other. In theory, you
can be sending a message to your friend while your friend is sending a message to you (although it
might be hard for your brain to read and send messages at the same time).

You also might be clever enough to discover that you can reduce your wire requirements by 25
percent by wiring the configuration this way:

981 90

A

Your Your friend’s
house house

Notice that the negative terminals of the two batteries are now connected. The two circular circuits
(battery to switch to bulb to battery) still operate independently, even though they're now joined like
Siamese twins.

This connection is called a common. In this circuit the common extends from the point where the
leftmost lightbulb and battery are connected to the point where the rightmost lightbulb and battery are
connected. These connections are indicated by dots.

Let's take a closer look to assure ourselves that nothing funny is going on. First, when you depress the
switch on your side, the bulb in your friend's house lights up. The red wires show the flow of
electricity in the circuit:

f-. :\H'f/,, f_‘/._\

- ~—

£ b

)

Your Your friend’s
house house

y

No electricity flows in the other part of the circuit because there's no place for the electrons to go to
complete a circuit.

When you're not sending but your friend is sending, the switch in your friend's house controls the
lightbulb in your house. Once again, the red wires show how electricity flows in the circuit:

\""’/
—~— - II/-'—-_'—H\
/ \)]

)

vy

Your Your friend’s
house house

When you and your friend both try to send at the same time, sometimes both switches are open,
sometimes one switch is closed but the other is open, and sometimes both switches are depressed. In
that case, the flow of electricity in the circuit looks like this:

% \ / / % \ / /
e P f—c—-— e - f—c—'--q.\l
v 4 e i / N)
A
Your Your friend’s
house house

No current flows through the common part of the circuit.

By using a common to join two separate circuits into one circuit, we've reduced the electrical
connection between the two houses from four wires to three wires and reduced our wire expenses by
25 percent.

If we had to string the wires for a very long distance, we might be tempted to reduce our expenses
even more by eliminating another wire. Unfortunately, this isn't feasible with 1.5-volt D cells and

small lightbulbs. But if we were dealing with 100-volt batteries and much larger lightbulbs, it could
certainly be done.

Here's the trick: Once you have established a common part of the circuit, you don't have to use wire
for it. You can replace the wire with something else. And what you can replace it with is a giant
sphere approximately 7900 miles in diameter made up of metal, rock, water, and organic material,
most of which is dead. The giant sphere is known to us as Earth.

When I described good conductors in the last chapter, I mentioned silver, copper, and gold, but not
gravel and mulch. In truth, the earth isn't such a hot conductor, although some kinds of earth (damp
soil, for example) are better than others (such as dry sand). But one thing we learned about
conductors is this: The larger the better. A very thick wire conducts much better than a very thin wire.
That's where the earth excels. It's really, really, really big.

To use the earth as a conductor, you can't merely stick a little wire into the ground next to the tomato
plants. You have to use something that maintains a substantial contact with the earth, and by that I
mean a conductor with a large surface area. One good solution is a copper pole at least 8 feet long
and % inch in diameter. That provides 150 square inches of contact with the earth. You can bury the
pole into the ground with a sledgehammer and then connect a wire to it. Or, if the cold-water pipes in
your home are made of copper and originate in the ground outside the house, you can connect a wire
to the pipe.

An electrical contact with the earth is called an earth in Great Britain and a ground in America. A bit
of confusion surrounds the word ground because it's also often used to refer to a part of a circuit
we've been calling the common. In this chapter, and until I indicate otherwise, a ground is a physical
connection with the earth.

When people draw electrical circuits, they use this symbol to represent a ground:

L

Electricians use this symbol because they don't like to take the time to draw an 8-foot copper pole
buried in the ground.

Let's see how this works. We began this chapter by looking at a one-way configuration like this:
f P

4+

.

Your Your friend’s
ek house

If you were using high-voltage batteries and lightbulbs, you would need only one wire between your
house and your friend's house because you could use the earth as one of the connectors:

Your 1 Your friend’s
house =3 house

When you turn the switch on, electricity flows like this:

R A
¥ ¥

S, -
I — (a2
+ - S
_ P \
‘ e

Your Your friend’s

= house = house

The electrons come out of the earth at your friend's house, go through the lightbulb and wire, the
switch at your house, and then go into the positive terminal of the battery. Electrons from the negative
terminal of the battery go into the earth.

You might also want to visualize electrons leaping from the 8-foot copper pole buried in the backyard
of your house into the earth, then scurrying through the earth to get to the 8-foot copper pole buried in
the backyard of your friend's house.

But if you consider that the earth is performing this same function for many thousands of electrical
circuits around the world, you might ask: How do the electrons know where to go? Well, obviously
they don't. A different image of the earth seems much more appropriate.

Yes, the earth is a massive conductor of electricity, but it can also be viewed as both a source of and
a repository for electrons. The earth is to electrons as an ocean is to drops of water. The earth is a
virtually limitless source of electrons and also a giant sink for electrons.

The earth, however, does have some resistance. That's why we can't use the earth ground to reduce
our wiring needs if we're playing around with 1.5-volt D cells and flashlight bulbs. The earth simply
has too much resistance for low-voltage batteries.

You'll notice that the previous two diagrams include a battery with the negative terminal connected to
the ground:

+

I'm not going to draw this battery connected to the ground anymore. Instead, I'm going to use the
capital letter V, which stands for voltage. The one-way lightbulb telegraph now looks like this:

L

Your
house

Your friend’s
house

—

The V stands for voltage, but it could also stand for vacuum. Think of the V as an electron vacuum
and think of the ground as an ocean of electrons. The electron vacuum pulls the electrons from the
earth through the circuit, doing work along the way (such as lighting a lightbulb).

The ground is sometimes also known as the point of zero potential. This means that no voltage is
present. A voltage—as I explained earlier—is a potential for doing work, much as a brick suspended
in the air is a potential source of energy. Zero potential is like a brick sitting on the ground—there's
no place left for it to fall.

In Chapter 4, one of the first things we noticed was that circuits were circles. Our new circuit doesn't
look like a circle at all. It still is one, however. You could replace the V with a battery with the
negative terminal connected to ground, and then you could draw a wire connecting all the places you
see a ground symbol. You'd end up with the same diagram that we started with in this chapter.

So with the help of a couple of copper poles (or cold-water pipes), we can construct a two-way
Morse code system with just two wires crossing the fence between your house and your friend's:

vV

),

Your friend’s
house

L

Your —yl
house

This circuit is functionally the same as the configuration shown previously, in which three wires
crossed the fence between the houses.

In this chapter, we've taken an important step in the evolution of communications. Previously we had
been able to communicate with Morse code but only in a straight line of sight and only as far as the
beam from a flash-light would travel.

By using wires, not only have we constructed a system to communicate around corners beyond the
line of sight, but we've freed ourselves of the limitation of distance. We can communicate over
hundreds and thousands of miles just by stringing longer and longer wires.

Well, not exactly. Although copper is a very good conductor of electricity, it's not perfect. The longer
the wires, the more resistance they have. The more resistance, the less current that flows. The less

current, the dimmer the lightbulbs.

So how long exactly can we make the wires? That depends. Let's suppose you're using the original
four-wire, bidirectional hookup without grounds and commons, and you're using flashlight batteries
and lightbulbs. To keep your costs down, you may have initially purchased some 20-gauge speaker
wire from Radio Shack at $9.99 per 100 feet. Speaker wire is normally used to connect your speakers
to your stereo system. It has two conductors, so it's also a good choice for our telegraph system. If
your bedroom and your friend's bedroom are less than 50 feet apart, this one roll of wire is all you
need.

The thickness of wire is measured in American Wire Gauge, or AWG. The smaller the AWG number,
the thicker the wire and also the less resistance it has. The 20-gauge speaker wire you bought has a
diameter of about 0.032 inches and a resistance of about 10 ohms per 1000 feet, or 1 ohm for the 100-
foot round-trip distance between the bedrooms.

That's not bad at all, but what if we strung the wire out for a mile? The total resistance of the wire
would be more than 100 ohms. Recall from the last chapter that our lightbulb was only 4 ohms. From
Ohm's Law, we can easily calculate that the current through the circuit will no longer be 0.75 amp (3
volts divided by 4 ohms) as before, but will now be less than 0.03 amp (3 volts divided by more than
100 ohms). Almost certainly, that won't be enough current to light the bulb.

Using thicker wire is a good solution, but that can be expensive. Ten-gauge wire (which Radio Shack
sells as Automotive Hookup Wire at $11.99 for 35 feet, and you'd need twice as much because it has
only one conductor rather than two) is about 0.1 inch thick but has a resistance of only 1 ohm per
1000 feet, or 5 ohms per mile.

Another solution is to increase the voltage and use lightbulbs with a much higher resistance. For
example, a 100-watt lightbulb that lights a room in your house is designed to be used with 120 volts
and has a resistance of about 144 ohms. The resistance of the wires will then affect the overall
circuitry much less.

These are problems faced 150 years ago by the people who strung up the first telegraph systems
across America and Europe. Regardless of the thickness of the wires and the high levels of voltage,
telegraph wires simply couldn't be continued indefinitely. At most, the limit for a working system
according to this scheme was a couple hundred miles. That's nowhere close to spanning the thousands
of miles between New York and California.

The solution to this problem—not for flashlights but for the clicking and clacking telegraphs of
yesteryear—turns out to be a simple and humble device, but one from which entire computers can be
built.

Chapter 6. Telegraphs and Relays

Samuel Finley Breese Morse was born in 1791 in Charleston, Massachusetts, the town where the
Battle of Bunker Hill was fought and which is now the northeast part of Boston. In the year of Morse's
birth, the United States Constitution had been ratified just two years before and George Washington
was serving his first term as president. Catherine the Great ruled Russia. Louis XVI and Marie
Antoinette would lose their heads two years later in the French Revolution. And in 1791, Mozart
completed The Magic Flute, his last opera, and died later that year at the age of 35.

Morse was educated at Yale and studied art in London. He became a successful portrait artist. His
painting General Lafayette (1825) hangs in New York's City Hall. In 1836, he ran for mayor of New
York City on an independent ticket and received 5.7 percent of the vote. He was also an early
photography buff. Morse learned how to make daguerreotype photographs from Louis Daguerre
himself and made some of the first daguerreotypes in America. In 1840, he taught the process to the
17-year-old Mathew Brady, who with his colleagues would be responsible for creating the most
memorable photographs of the Civil War, Abraham Lincoln, and Samuel Morse himself.

But these are just footnotes to an eclectic career. Samuel F. B. Morse is best known these days for his
invention of the telegraph and the code that bears his name.

The instantaneous worldwide communication we've become accustomed to is a relatively recent
development. In the early 1800s, you could communicate instantly and you could communicate over
long distances, but you couldn't do both at the same time. Instantaneous communication was limited to
as far as your voice could carry (no amplification available) or as far as the eye could see (aided
perhaps by a telescope). Communication over longer distances by letter took time and involved
horses, trains, or ships.

For decades prior to Morse's invention, many attempts were made to speed long-distance
communication. Technically simple methods employed a relay system of men standing on hills
waving flags in semaphore codes. Technically more complex solutions used large structures with
movable arms that did basically the same thing as men waving flags.

The idea of the telegraph (literally meaning "far writing") was certainly in the air in the early 1800s,
and other inventors had taken a stab at it before Samuel Morse began experimenting in 1832. In

principle, the idea behind an electrical telegraph was simple: You do something at one end of a wire
that causes something to happen at the other end of the wire. This is exactly what we did in the last
chapter when we made a long-distance flashlight. However, Morse couldn't use a lightbulb as his
signaling device because a practical one wouldn't be invented until 1879. Instead, Morse relied upon
the phenomenon of electromagnetism.

If you take an iron bar, wrap it with a couple hundred turns of thin wire, and then run a current through
the wire, the iron bar becomes a magnet. It then attracts other pieces of iron and steel. (There's enough
thin wire in the electromagnet to create a resistance great enough to prevent the electromagnet from
constituting a short circuit.) Remove the current, and the iron bar loses its magnetism:

The electromagnet is the foundation of the telegraph. Turning the switch on and off at one end causes
the electromagnet to do something at the other end.

Morse's first telegraphs were actually more complex than the ones that later evolved. Morse felt that a
telegraph system should actually write something on paper, or as computer users would later phrase
it, "produce a hard copy." This wouldn't necessarily be words, of course, because that would be too
complex. But something should be written on paper, whether it be squiggles or dots and dashes.
Notice that Morse was stuck in a paradigm that required paper and reading, much like Valentin
Haiiy's notion that books for the blind should use raised letters of the alphabet.

Although Samuel Morse notified the patent office in 1836 that he had invented a successful telegraph,
it wasn't until 1843 that he was able to persuade Congress to fund a public demonstration of the
device. The historic day was May 24, 1844, when a telegraph line rigged between Washington, D.C.,
and Baltimore, Maryland, successfully carried the biblical message: "What hath God wrought!"

The traditional telegraph "key" used for sending messages looked something like this:
P "‘&"

Despite the fancy appearance, this was just a switch designed for maximum speed. The most
comfortable way to use the key for long periods of time was to hold the handle between thumb,
forefinger, and middle finger, and tap it up and down. Holding the key down for a short period of time
produced a Morse code dot. Holding it down longer produced a Morse code dash.

At the other end of the wire was a receiver that was basically an electromagnet pulling a metal lever.
Originally, the electromagnet controlled a pen. While a mechanism using a wound-up spring slowly
pulled a roll of paper through the gadget, an attached pen bounced up and down and drew dots and

dashes on the paper. A person who could read Morse code would then transcribe the dots and dashes
into letters and words.

Of course, we humans are a lazy species, and telegraph operators soon discovered that they could
transcribe the code simply by listening to the pen bounce up and down. The pen mechanism was
eventually eliminated in favor of the traditional telegraph "sounder," which looked something like
this:

When the telegraph key was pressed, the electromagnet in the sounder pulled the movable bar down
and it made a "click" noise. When the key was released, the bar sprang back to its normal position,
making a "clack" noise. A fast "click-clack" was a dot; a slower "click...clack" was a dash.

The key, the sounder, a battery, and some wires can be connected just like the lightbulb telegraph in
the preceding chapter:

Your telegraph Your friend’s
station telegraph station

As we discovered, you don't need two wires connecting the two telegraph stations. One wire will
suffice if the earth provides the other half of the circuit.

As we did in the previous chapter, we can replace the battery connected to the ground with a capital
V. So the complete one-way setup looks something like this:

Your telegraph Your friend’s
station telegraph station

Two-way communication simply requires another key and sender. This is similar to what we did in
the preceding chapter.

The invention of the telegraph truly marks the beginning of modern communication. For the first time,
people were able to communicate further than the eye could see or the ear could hear and faster than a

horse could gallop. That this invention used a binary code is all the more intriguing. In later forms of
electrical and wireless communication, including the telephone, radio, and television, binary codes
were abandoned, only to later make an appearance in computers, compact discs, digital videodiscs,
digital satellite television broadcasting, and high-definition TV.

Morse's telegraph triumphed over other designs in part because it was tolerant of bad line conditions.
If you strung a wire between a key and a sounder, it usually worked. Other telegraph systems were not
quite as forgiving. But as I mentioned in the last chapter, a big problem with the telegraph lay in the
resistance of long lengths of wire. Although some telegraph lines used up to 300 volts and could work
over a 300-mile length, wires couldn't be extended indefinitely.

One obvious solution is to have a relay system. Every couple hundred miles or so, a person equipped
with a sounder and a key could receive a message and resend it.

Now imagine that you have been hired by the telegraph company to be part of this relay system. They
have put you out in the middle of nowhere between New York and California in a little hut with a
table and a chair. A wire coming through the east window is connected to a sounder. Your telegraph
key is connected to a battery and wire going out the west window. Your job is to receive messages
originating in New York and to resend them, eventually to reach California.

At first, you prefer to receive an entire message before resending it. You write down the letters that
correspond to the clicks of the sounder, and when the message is finished, you start sending it using
your key. Eventually you get the knack of sending the message as you're hearing it without having to
write the whole thing down. This saves time.

One day while resending a message, you look at the bar on the sounder bouncing up and down, and
you look at your fingers bouncing the key up and down. You look at the sounder again and you look at
the key again, and you realize that the sounder is bouncing up and down the same way the key is
bouncing up and down. So you go outside and pick up a little piece of wood and you use the wood
and some string to physically connect the sounder and the key:

|[1|

Now it works by itself, and you can take the rest of the afternoon off and go fishing.

It's an interesting fantasy, but in reality Samuel Morse had understood the concept of this device early
on. The device we've invented is called a repeater, or a relay. A relay is like a sounder in that an
incoming current is used to power an electromagnet that pulls down a metal lever. The lever,
however, is used as part of a switch connecting a battery to an outgoing wire. In this way, a weak
incoming current is "amplified" to make a stronger outgoing current.

Drawn rather schematically, the relay looks like this:

| o

In

When an incoming current triggers the electromagnet, the electromagnet pulls down a flexible strip of
metal that acts like a switch to turn on an outgoing current:

vV

— Out

So a telegraph key, a relay, and a sounder are connected more or less like this:

Your telegraph The relay station Your friend’s
station telegraph station

The relay is a remarkable device. It's a switch, surely, but a switch that's turned on and off not by
human hands but by a current. You could do amazing things with such devices. You could actually
assemble much of a computer with them.

Yes, this relay thing is much too sweet an invention to leave sitting around the telegraphy museum.
Let's grab one and stash it inside our jacket and walk quickly past the guards. This relay will come in
very handy. But before we can use it, we're going to have to learn to count.

Chapter 7. Our Ten Digits

The idea that language is merely a code seems readily acceptable. Many of us at least attempted to
learn a foreign language in high school, so we're willing to acknowledge that the animal we call a cat
in English can also be a gato, chat, Katze, KOIIIKa, or Katta.

Numbers, however, seem less culturally malleable. Regardless of the language we speak and the way
we pronounce the numbers, just about everybody we're likely to come in contact with on this planet
writes them the same way:

123 45 6 7 8 9 10

Isn't mathematics called "the universal language" for a reason?

Numbers are certainly the most abstract codes we deal with on a regular basis. When we see the
number

we don't immediately need to relate it to anything. We might visualize 3 apples or 3 of something
else, but we'd be just as comfortable learning from context that the number refers to a child's birthday,
a television channel, a hockey score, or the number of cups of flour in a cake recipe. Because our
numbers are so abstract to begin with, it's more difficult for us to understand that this number of
apples

doesn't necessarily have to be denoted by the symbol

3

Much of this chapter and the next will be devoted to persuading ourselves that this many apples

can also be indicated by writing

11

Let's first dispense with the idea that there's something inherently special about the number ten. That
most civilizations have based their number systems around ten (or sometimes five) isn't surprising.
From the very beginning, people have used their fingers to count. Had our species developed
possessing eight or twelve fingers, our ways of counting would be a little different. It's no
coincidence that the word digit can refer to fingers or toes as well as numbers or that the words five
and fist have similar roots.

So in that sense, using a base-ten, or decimal (from the Latin for ten), number system is completely
arbitrary. Yet we endow numbers based on ten with an almost magical significance and give them

special names. Ten years is a decade; ten decades is a century; ten centuries is a millennium. A
thousand thousands is a million; a thousand millions is a billion. These numbers are all powers of ten:

10! =10

10% =100

102 =1000 (thousand)

10% =10,000

10° =100,000

108 =1,000,000 (million)

107 =10,000,000

108 =100,000,000

10° =1,000,000,000 (billion)

Most historians believe that numbers were originally invented to count things, such as people,
possessions, and transactions in commerce. For example, if someone owned four ducks, that might be

recorded with drawings of four ducks:
c;-‘*;'
¥ _‘Jé“ _jé‘)§_)
3&\ S‘*) E* ;rm Fe, s E*agn

Eventually the person whose job it was to draw the ducks thought, "Why do I have to draw four
ducks? Why can't I draw one duck and indicate that there are four of them with, I don't know, a scratch
mark or something?"

And then there came the day when someone had 27 ducks, and the scratch marks got ridiculous:

& M

Someone said, "There's got to be a better way," and a number system was born.

Of all the early number systems, only Roman numerals are still in common use. You find them on the
faces of clocks and watches, used for dates on monuments and statues, for some page numbering in
books, for some items in an outline, and—most annoyingly—for the copyright notice in movies. (The
question "What year was this picture made?" can often be answered only if one is quick enough to
decipher MCMLIII as the tail end of the credits goes by.)

Twenty-seven ducks in Roman numerals is

The concept here is easy enough: The X stands for 10 scratch marks and the V stands for 5 scratch
marks.

The symbols of Roman numerals that survive today are

I[VXXLCDM

The I is a one. This could be derived from a scratch mark or a single raised finger. The V, which is
probably a symbol for a hand, stands for five. Two V's make an X, which stands for ten. The L is a
fifty. The letter C comes from the word centum, which is Latin for a hundred. D is five hundred.
Finally, M comes from the Latin word mille, or a thousand.

Although we might not agree, for a long time Roman numerals were considered easy to add and
subtract, and that's why they survived so long in Europe for bookkeeping. Indeed, when adding two
Roman numerals, you simply combine all the symbols from both numbers and then simplify the result
using just a few rules: Five I's make a V, two V's make an X, five X's make an L, and so forth.

But multiplying and dividing Roman numerals is difficult. Many other early number systems (such as
that of the ancient Greeks) are similarly in-adequate for working with numbers in a sophisticated
manner. While the Greeks developed an extraordinary geometry still taught virtually unchanged in
high schools today, the ancient Greeks aren't known for their algebra.

The number system we use today is known as the Hindu-Arabic or Indo-Arabic. It's of Indian origin
but was brought to Europe by Arab mathematicians. Of particular renown is the Persian
mathematician Muhammed ibn-Musa al-Khwarizmi (from whose name we have derived the word
algorithm) who wrote a book on algebra around A.D. 825 that used the Hindu system of counting. A
Latin translation dates from A.D. 1120 and was influential in hastening the transition throughout
Europe from Roman numerals to our present Hindu-Arabic system.

The Hindu-Arabic number system was different from previous number systems in three ways:

m The Hindu-Arabic number system is said to be positional, which means that a particular digit
represents a different quantity depending on where it is found in the number. Where digits appear
in a number is just as significant (actually, more significant) than what the digits actually are. Both
100 and 1,000,000 have only a single 1 in them, yet we all know that a million is much larger than
a hundred.

m Virtually all early number systems have something that the Hindu-Arabic system does not have,
and that's a special symbol for the number ten. In our number system, there's no special symbol for
ten.

= On the other hand, virtually all of the early number systems are missing something that the Hindu-
Arabic system has, and which turns out to be much more important than a symbol for ten. And
that's the zero.

Yes, the zero. The lowly zero is without a doubt one of the most important inventions in the history of
numbers and mathematics. It supports positional notation because it allows differentiation of 25 from
205 and 250. The zero also eases many mathematical operations that are awkward in nonpositional
systems, particularly multiplication and division.

The whole structure of Hindu-Arabic numbers is revealed in the way we pronounce them. Take 4825,
for instance. We say "four thousand, eight hundred, twenty-five." That means

four thousands
eight hundreds
two tens and

five.

Or we can write the components like this:

4825 = 4000 + 800 + 20 + 5

Or breaking it down even further, we can write the number this way:

4825 = 4 x 1000 +
8x 100 +
2x10+

5x1

Or, using powers of ten, the number can be rewritten like this:

4825 =4x10° +
8x 107 +
2x 10" +
5x 10°

Remember that any number to the O power equals 1.

Each position in a multidigit number has a particular meaning, as shown in the following diagram.
The seven boxes shown here let us represent any number from 0 through 9,999,999:

L Number of ones

Number of tens

Number of hundreds

Number of thousands

Number of ten thousands

Number of hundred thousands

Number of millions

Each position corresponds to a power of ten. We don't need a special symbol for ten because we set
the 1 in a different position and we use the 0 as a placeholder.

What's also really nice is that fractional quantities shown as digits to the right of a decimal point
follow this same pattern. The number 42,705.684 is

4 x 10,000 +
2 x 1000 +
7 x 100 +
0x10+
S5x1+
6+10+

8 + 100 +
4 + 1000

This number can also be written without any division, like this:

4 x 10,000 +
2 x 1000 +
7 x 100 +
0x 10+
S5x1+
6x0.1+
8x0.01 +

4 x 0.001

Or, using powers of ten, the number is

4x10% +
2x10% +
7x10% +
0x 10! +
5x 107 +
6x 107" +
8x1072 +
4x1073

Notice how the exponents go down to zero and then become negative numbers.

We know that 3 plus 4 equals 7. Similarly, 30 plus 40 equals 70, 300 plus 400 equals 700, and 3000
plus 4000 equals 7000. This is the beauty of the Hindu-Arabic system. When you add decimal
numbers of any length, you follow a procedure that breaks down the problem into steps. Each step
involves nothing more complicated than adding pairs of single-digit numbers. That's why someone a
long time ago forced you to memorize an addition table:

+/0/1 /23 4 /5|6 |7 |89
0(0/1 23 4 |51|6|7 |89
1/1/2 |3 /4 /56 |7 |89 10
2123 14 |/51/6 (7 (8|9 1011
3/3/4 567|819 |10(11/|12
44|56 |7 (8|9 |10/11|12|13
5/5/6 |7 |8 |9 |10|11|12|13 14

6/6/7 8 |9 |10(11|12|13|14 15

7 78 9 10 11 12 13 14 15 16
8/8(9 |10/11/12|13|14|15/16|17

9/9/10/1112|13|14|15|16|17 18

Find the two numbers you wish to add in the top row and the left column. Follow down and across to
get the sum. For example, 4 plus 6 equals 10.

Similarly, when you need to multiply two decimal numbers, you follow a somewhat more
complicated procedure but still one that breaks down the problem so that you need do nothing more
complex than adding or multiplying single-digit decimal numbers. Your early schooling probably also
entailed memorizing a multiplication table:

x/001/2 3 /4 5|6 7 89
0/0/0/0|0|O|O |00 00
1/0/1(2 |3 /4 516|789
2/0/2/4 |6 |8 |10(12|14|16/|18
3/0/3/6 |9 |12/15|18|21|24|27
4/0(4/8 |12|16|20|2428|32|36
5/0(5/10|15|20|25|30(35|40|45
6/0(6/12/18|24|30|36 424854
7107142128 |35(4249|56 |63
8/0(8/16|24|32|40(48|56 |64 72

9/0(9/18|27|36|45|54|63|72 81

What's best about the positional system of notation isn't how well it works, but how well it works for
counting systems not based on ten. Our number system isn't necessarily appropriate for everyone. One
big problem with our base-ten system of numbers is that it doesn't have any relevance for cartoon
characters. Most cartoon characters have only four fingers on each hand (or paw), so they prefer a
number system that's based on eight. Interestingly enough, much of what we know about decimal
numbering can be applied to a numbering system more appropriate for our friends in cartoons.

Chapter 8. Alternatives to Ten

Ten is an exceptionally important number to us humans. Ten is the number of fingers and toes most of
us have, and we certainly prefer to have all ten of each. Because our fingers are convenient for
counting, we humans have adapted an entire number system that's based on the number 10.

As I mentioned in the previous chapter, the number system that we use is called base ten, or decimal.
The number system seems so natural to us that it's difficult at first to conceive of alternatives. Indeed,
when we see the number 10 we can't help but think that thls number refers to thlS many ducks:

10 = @‘)? w 1@“)@U@ ié’ 1@)@)?5

r«-« \ﬁrh mr m_»'.-.:. M Jh WL .r‘u.}-

But the only reason that the number 10 refers to this many ducks is that this many ducks is the same as

the number of fingers we have. If human beings had a different number of fingers, the way we counted
would be different, and 10 would mean something else. That same number 10 could refer to this many
ducks:

= j’g’ S
10 A L &% ii« L EL LY %;L) %5

k!
-

or this many ducks:

or even this many ducks:

When we get to the point where 10 means just two ducks, we'll be ready to examine how switches,
wires, lightbulbs, and relays (and by extension, computers) can represent numbers.

What if human beings had only four fingers on each hand, like cartoon characters? We probably never

would have thought to develop a number system based on ten. Instead, we would have considered it
normal and natural and sensible and inevitable and incontrovertible and undeniably proper to base
our number system on eight. We wouldn't call this a decimal number system. We'd call it an octal
number system, or base eight.

If our number system were organized around eight rather than ten, we wouldn't need the symbol that
looks like this:

Show this symbol to any cartoon character and you'll get the response, "What's that? What's it for?"
And if you think about it a moment, we also wouldn't need the symbol that looks like this:

8

In the decimal number system, there's no special symbol for ten, so in the octal number system there's
no special symbol for eight.

The way we count in the decimal number systemis 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and then 10. The way we
count in the octal number systemis 0, 1, 2, 3, 4, 5, 6, 7, and then what? We've run out of symbols. The
only thing that makes sense is 10, and that's correct. In octal, the next number after 7 is 10. But this 10
doesn't mean the number of fingers that humans have. In octal, 10 refers to the number of fingers that
cartoon characters have.

We can continue counting on our four-toed feet:

When you're working with number systems other than decimal, you can avoid some confusion if you
pronounce a number like 10 as one zero. Similarly, 13 is pronounced one three and 20 is pronounced
two zero. To really avoid confusion, we can say two zero base eight or two zero octal.

Even though we've run out of fingers and toes, we can still continue counting in octal. It's basically the
same as counting in decimal except that we skip every number that has an 8 or a 9 in it. And of
course, the actual numbers refer to different quantities:

0,1,23,4,5,6,7,10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22,
23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43,
44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64,
65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 100...

That last number is pronounced one zero zero. It's the number of fingers that cartoon characters have,
multiplied by itself.

When writing decimal and octal numbers, we can avoid confusion and denote which is which by
using a subscript to indicate the numbering system. The subscript TEN means base ten or decimal,
and EIGHT means base eight or octal.

Thus, the number of dwarfs that Snow White meets is 7TrN or 7EIGHT
The number of fingers that cartoon characters have is 8TgN or 10g[GHT
The number of symphonies that Beethoven wrote is STgN or 11g[GHT
The number of fingers that humans have is 10TgN or 12EpIGHT

The number of months in a year is 12TgN or 4gIGHT

The number of days in a fortnight is 147N or 16RIGHT

The "sweet" birthday celebration is 16TgN or 20p[GHT

The number of hours in a day is 24TgN or 30pIGHT

The number of letters in the Latin alphabet is 26TgN or 32p1GHT

The number of fluid ounces in a quart is 32TEN or 40RIGHT

The number of cards in a deck is 52TgN or 64gIGHT

The number of squares on a chessboard is 647N or 100p|GHT

The most famous address on Sunset Strip is 77TEN or 115p1GHT

The number of yards in an American football field is 100N or 144E1GHT

The number of starting women singles players at Wimbledon is 128N or 200p|GHT
The number of square miles in Memphis is 2561 N or 400g1GHT

Notice that there are a few nice round octal numbers in this list, such as 100g;gyt and 200g;cyT and
400g;cT- By the term nice round number we usually mean a number that has some zeros at the end.
Two zeros on the end of a decimal number means that the number is a multiple of 100y, which is
101gy times 10gy. With octal numbers, two zeros on the end means that the number is a multiple of
100g;cT Whichis 10ggyT times 10ggyT (Or 81py times 81y, which is 641gy)-

You might also notice that these nice round octal numbers 100g;cgt and 200ggyt and 400g;cyT have
the decimal equivalents 641py, 1281py, and 2561y, all of which are powers of two. This makes
sense. The number 400g;cyT (for example) is 4ggyT times 10ggyT times 10g1gyT, all of which are
powers of two. And anytime we multiply a power of two by a power of two, we get another power of
two.

The following table shows some powers of two with the decimal and octal representations:

Power of | Two Decimal | Octal

20 1 1

2! 2 2

2? 4 4

23 8 10
24 16 20
2° 32 40
26 64 100
27 128 200
28 256 400
29 512 1000
210 1024 2000
o1 2048 4000
212 4096 10000

The nice round numbers in the rightmost column are a hint that number systems other than decimal
might help in working with binary codes.

The octal system isn't different from the decimal system in any structural way. It just differs in details.
For example, each position in an octal number is a digit that's multiplied by a power of eight:

—— Number of ones

Number of eights

Number of sixty-fours
Number of five hundred twelves
Number of four thousand ninety-sixes

Number of thirty-two thousand
seven hundred sixty-eights

Thus, an octal number such as 3725yt can be broken down like so:

3725gIGHT = 3000EIGHT + 700EIGHT * 20EIGHT * SEIGHT

This can be rewritten in any of several ways. Here's one way, using the powers of eight in their
decimal forms:

3725RIGHT = 3 X S12TEN +
7 X 64TEN +

2X8TEN +
5x1

This is the same thing with the powers of eight shown in their octal form:

3725g1GHT = 3 X 1000gIGHT *
7 x 100gIGHT *+

2x 10gIGHT *+
5x1

Here's another way of doing it:

3725g1GHT =3 x 8% +

7x 8%+

2x 8+

5x 8°
If you work out this calculation in decimal, you'll get 20051y This is how you can convert octal
numbers to decimal numbers.

We can add and multiply octal numbers the same way we add and multiply decimal numbers. The
only real difference is that we use different tables for adding and multiplying the individual digits.
Here's the addition table for octal numbers:

+/0/1 23 /4|56 |7

0/0/1 |2 |3 |4 |5 |6 |7
11|12 |3 |45 |6 |7 10

2/12/3 |14 |56 |7 1011
3/3/4 5|6 |7 |10|11|12
4|45 6 |7 10/11|12|13
5/5/6 |7 |10|11|12|13 |14
6(6/7 10/11|12|13|14 15

7|7(10/11/12/13|14|15|16

For example, S5gicat + 7ricuT = 14p1caT- SO We can add two longer octal numbers the same way we

add decimal numbers:
135

+ 643
1000

To begin with the right column, 5 plus 3 equals 10. Put down the 0, carry the 1. One plus 3 plus 4
equals 10. Put down the 0, carry the 1. One plus 1 plus 6 equals 10.

Similarly, 2 times 2 is still 4 in octal. But 3 times 3 isn't 9. How could it be? Instead 3 times 3 is
11g1cgT, Which is the same amount as 91gy. You can see the entire octal multiplication table at the

top of the following page.
x0/12 3 456 |7
0000000 0]0
101234567
2(0/2/4 |6 10 1214|16
3/0/3/6 11|14/17|22|25
4/0/4/10/14/20 243034
5/0|5/12|17|24 31|36/43
6(06|14/22 3036 44|52

710(7]16|25(34|43|52 61

Here we have 4 x 6 equaling 30g;cyr, but 30g1gyT 1S the same as 24y, which is what 4 x 6 equals
in decimal.

Octal is as valid a number system as decimal. But let's go further. Now that we've developed a
numbering system for cartoon characters, let's develop something that's appropriate for lobsters.
Lobsters don't have fingers exactly, but they do have pincers at the ends of their two front legs. An
appropriate number system for lobsters is the quaternary system, or base four:

Counting in quaternary goes like this: 0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33, 100,
101, 102, 103, 110, and so forth.
I'm not going to spend much time with the quaternary system because we'll be moving on shortly to

something much more important. But we can see how each position in a quaternary number
corresponds this time to a power of four:

L Number of ones

Number of fours

Number of sixteens

Number of sixty-fours
Number of two hundred fifty-sixes
Number of one thousand twenty-fours

The quaternary number 31232 can be written like this:

31232pQUR = 3 X 256TEN +
1 x 64TEN *

2x 16TEN +

3XATEN +

2X1TEN

which is the same as

31232poyR = 3 x 10000pUR +
1x 1000poUR *

2x100pQUR +
3x10poUR +
2x 1poUR

And it's also the same as

31232p0UR =3 x 4% +
1x4%+

2x 4% +

3x4+

2 x 4

If we do the calculations in decimal, we'll find that 312324 equals 878 .

Now we're going to make another leap, and this one is extreme. Suppose we were dolphins and must
resort to using our two flippers for counting. This is the number system known as base two, or binary
(from the Latin for two by two). It seems likely that we'd have only two digits, and these two digits
would be 0 and 1.

Now, 0 and 1 isn't a whole lot to work with, and it takes some practice to get accustomed to binary
numbers. The big problem is that you run out of digits very quickly. For example, here's how a
dolphin counts using its flippers:

Yes, in binary the next number after 1 is 10. This is startling, but it shouldn't really be a surprise. No
matter what number system we use, whenever we run out of single digits, the first two-digit number is
always 10. In binary we count like this:

0,1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100,
1101, 1110, 1111, 10000, 10001...

These numbers might look large, but they're really not. It's more accurate to say that binary numbers
get long very quickly rather than large:

The number of heads that humans have is 1TgN or ITwO

The number of flippers that dolphins have is 2TgN or 10TwQ
The number of teaspoons in a tablespoon is 3TgN or 11TwQO
The number of sides to a square is 4TgN or 100TwO

The number of fingers on one human hand is 5T or 101TwQO
The number of legs on an insect is 6TgN or 110TwQO

The number of days in a week is 7TgN or 111Tw(QO

The number of musicians in an octet is 8TgN or 1000w

The number of planets in our solar system (including Pluto) is 9N or 1001w

The number of gallons in a cowboy hat is 107N or 1010w

and so forth.

In a multidigit binary number, the positions of the digits correspond to powers of two:

L Number of ones
Number of twos
Number of fours

Number of eights

Number of sixteens

Number of thirty-twos

So anytime we have a binary number composed of a 1 followed by all zeros, that number is a power
of two. The power is the same as the number of zeros in the binary number. Here's our expanded table

of the powers of two demonstrating this rule:

Power of Two Decimal Octal | Quaternary Binary

20 1

2! 2

2? 4

23 8

24 16
2° 32
26 64
2/ 128
28 256
29 512
210 1024
211 2048
212 4096

1 1 1

2 2 10

4 10 100

10 20 1000

20 100 10000

40 200 100000

100 | 1000 1000000

200 | 2000 10000000
400 | 10000 100000000
1000 |20000 1000000000
2000 | 100000 10000000000
4000 | 200000 100000000000

10000 | 1000000 1000000000000

Let's say we have the binary number 101101011010. This can be written as

101101011010TwQ = 1 x 2048TEN +

0x 1024TEN +

1x 512N +
1x 256TEN +
0x 128TEN +
1 x 64TEN +
0x32TEN +
1x16TEN +

1x8TEN +
0X4TEN +
1X2TEN +
0x 1TEN

The same number can be written this way:

1011010110107wo = 1 x 21 +

0x 210+
1x27 +
1x28+
0x2 +
1x25+
0x2°+
1x2%+
1x23+
0x2%+
1x2' +
0x2°

If we just add up the parts in decimal, we get 2048 + 512 + 256 + 64 + 16 + 8 + 2, which is
2,906 pN-

To convert binary numbers to decimal more concisely, you might prefer a method that uses a template
I've prepared:

X128 x64 X322 X16 X8 x4 X2 x]
+ + + + + + -+ =

This template allows you to convert numbers up to eight binary digits in length, but it could easily be
extended. To use it, put up to eight binary digits in the 8 boxes at the top, one digit to a box. Do the
eight multiplications and put the products in the 8 lower boxes. Add these eight boxes for the final
result. This example shows how to find the decimal equivalent of 10010110:

1 0 0 1 0 1 1 0

X128 x64 x32 X16 X8 X4 X2 X1

128 | O [T O | F|l6|T| O |T|4 T2]|T]|0]=] 150

Converting from decimal to binary isn't quite as straightforward, but here's a template that let's you
convert decimal numbers from 0 through 255 to binary:

The conversion is actually trickier than it appears, so follow the directions carefully. Put the entire
decimal number (less than or equal to 255) in the box in the upper left corner. Divide that number (the
dividend) by the first divisor (128), as indicated. Put the quotient in the box below (the box at the
lower left corner), and the remainder in the box to the right (the second box on the top row). That first
remainder is the dividend for the next calculation, which uses a divisor of 64. Continue in the same
manner through the template.

Keep in mind that each quotient will be either O or 1. If the dividend is less than the divisor, the
quotient is 0 and the remainder is simply the dividend. If the dividend is greater than or equal to the
divisor, the quotient is 1 and the remainder is the dividend minus the divisor. Here's how it's done
with 150:

1501 122 75 22 6 6 i 0

+128 +64 +32 <+16 +8 +4 2 =1

1 0 0 1 0 1 1 0

If you need to add or multiply two binary numbers, it's probably easier to do the calculation in binary
rather than convert to decimal. This is the part you're really going to like. Imagine how quickly you
could have mastered addition if the only thing you had to memorize was this:

+/0/1
0/01

1110

Let's use this table to add two binary numbers:
1100101
+ 0110110
10011011

Starting at the right column: 1 plus 0 equals 1. Second column from right: O plus 1 equals 1. Third
column: 1 plus 1 equals 0, carry the 1. Fourth column: 1 (carried) plus 0 plus 0 equals 1. Fifth
column: O plus 1 equals 1. Sixth column: 1 plus 1 equals 0, carry the 1. Seventh column: 1 (carried)

plus 1 plus 0 equals 10.

The multiplication table is even simpler than the addition table because it can be entirely derived by
using two of the very basic rules of multiplication: Multiplying anything by 0 gets you 0, and
multiplying any number by 1 has no effect on the number.

x 01
0/0/0

1/01

Here's a multiplication of 13gy by 11ppy in binary:

1101
x 1011
1101
1101
0000
1101
10001111

The result is 143 g

People who work with binary numbers often write them with leading zeros (that is, zeros to the left of
the first 1)—for example, 0011 rather than just 11. This doesn't change the value of the number at all;
it's just for cosmetic purposes. For example, here are the first sixteen binary numbers with their
decimal equivalents:

Binary Decimal

0000 |0
0001 1
0010 |2
0011 |3
0100 |4
0101 |5
0110 |6
0111 |7
1000 |8
1001 |9
1010 |10

1011 11

1100 12

1101 13
1110 14
1111 15

Let's take a look at this list of binary numbers for a moment. Consider each of the four vertical
columns of zeros and ones, and notice how the digits alternate going down the column:

m The rightmost digit alternates between 0 and 1.

m The next digit from the right alternates between two Os and two 1s.
m The next digit alternates between four Os and four 1s.

= The next digit alternates between eight Os and eight 1s.

This is very methodical, wouldn't you say? Indeed, you can easily write the next sixteen binary
numbers by just repeating the first sixteen and putting a 1 in front:

Binary | Decimal
10000 |16
10001 |17
10010 |18
10011 |19
10100 |20
10101 |21
10110 |22
10111 |23
11000 |24
11001 |25
11010 |26
11011 |27
11100 |28
11101 |29
11110 |30

11111 |31

Here's another way of looking at it: When you count in binary, the rightmost digit (also called the
least significant digit), alternates between 0 and 1. Every time it changes froma 1 to a 0, the digit
second to right (that is, the next most significant digit) also changes, either from 0 to 1 or from 1 to O.

So every time a binary digit changes froma 1 to a 0, the next most significant digit also changes,
either fromaOtoa 1 orfromaltoadO.

When we're writing large decimal numbers, we use commas every three places so that we can more
easily know what the number means at a glance. For example, if you see 12000000, you probably
have to count digits, but if you see 12,000,000, you know that means twelve million.

Binary numbers can get very long very quickly. For example, twelve million in binary is
101101110001101100000000. To make this a little more readable, it's customary to separate every
four binary digits with a dash, for example 1011-0111-0001-1011-0000-0000 or with spaces: 1011
0111 0001 1011 0000 0000. Later on in this book, we'll ook at a more concise way of expressing
binary numbers.

By reducing our number system to just the binary digits 0 and 1, we've gone as far as we can go. We
can't get any simpler. Moreover, the binary number system bridges the gap between arithmetic and
electricity. In previous chapters, we've been looking at switches and wires and lightbulbs and relays,
and any of these objects can represent the binary digits 0 and 1:

A wire can be a binary digit. If current is flowing through the wire, the binary digit is 1. If not, the
binary digit is O.

A switch can be a binary digit. If the switch is on, or closed, the binary digit is 1. If the switch is off,
or open, the binary digit is O.

A lightbulb can be a binary digit. If the lightbulb is lit, the binary digit is 1. If the lightbulb is not lit,
the binary digit is 0.

Atelegraph relay can be a binary digit. If the relay is closed, the binary digit is 1. If the relay is at
rest, the binary digit is 0.

Binary numbers have a whole lot to do with computers.

Sometime around 1948, the American mathematician John Wilder Tukey (born 1915) realized that the
words binary digit were likely to assume a much greater importance in the years ahead as computers
became more prevalent. He decided to coin a new, shorter word to replace the unwieldy five
syllables of binary digit. He considered bigit and binit but settled instead on the short, simple,
elegant, and perfectly lovely word bit.

Chapter 9. Bit by Bit by Bit

When Tony Orlando requested in a 1973 song that his beloved "Tie a Yellow Ribbon Round the Ole
Oak Tree," he wasn't asking for elaborate explanations or extended discussion. He didn't want any ifs,
ands, or buts. Despite the complex feelings and emotional histories that would have been at play in
the real-life situation the song was based on, all the man really wanted was a simple yes or no. He
wanted a yellow ribbon tied around the tree to mean "Yes, even though you messed up big time and
you've been in prison for three years, I still want you back with me under my roof." And he wanted
the absence of a yellow ribbon to mean "Don't even think about stopping here."

These are two clear-cut, mutually exclusive alternatives. Tony Orlando did not sing, "Tie half of a
yellow ribbon if you want to think about it for a while" or "Tie a blue ribbon if you don't love me
anymore but you'd still like to be friends." Instead, he made it very, very simple.

Equally effective as the absence or presence of a yellow ribbon (but perhaps more awkward to put
into verse) would be a choice of traffic signs in the front yard: Perhaps "Merge" or "Wrong Way."

Or a sign hung on the door: "Closed" or "Open."
Or a flashlight in the window, turned on or off.

You can choose from lots of ways to say yes or no if that's all you need to say. You don't need a
sentence to say yes or no; you don't need a word, and you don't even need a letter. All you need is a
bit, and by that I mean all youneed isa 0 or a 1.

As we discovered in the previous chapters, there's nothing really all that special about the decimal
number system that we normally use for counting. It's pretty clear that we base our number system on
ten because that's the number of fingers we have. We could just as reasonably base our number system

on eight (if we were cartoon characters) or four (if we were lobsters) or even two (if we were
dolphins).

But there is something special about the binary number system. What's special about binary is that it's
the simplest number system possible. There are only two binary digits—0 and 1. If we want
something simpler than binary, we'll have to get rid of the 1, and then we'll be left with just a 0. We
can't do much of anything with just a 0.

The word bit, coined to mean binary digit, is surely one of the loveliest words invented in
connection with computers. Of course, the word has the normal meaning, "a small portion, degree, or
amount,”" and that normal meaning is perfect because a bit—one binary digit—is a very small quantity
indeed.

Sometimes when a new word is invented, it also assumes a new meaning. That's certainly true in this
case. A bit has a meaning beyond the binary digits used by dolphins for counting. In the computer
age, the bit has come to be regarded as the basic building block of information.

Now that's a bold statement, and of course, bits aren't the only things that convey information. Letters
and words and Morse code and Braille and decimal digits convey information as well. The thing
about the bit is that it conveys very little information. A bit of information is the tiniest amount of
information possible. Anything less than a bit is no information at all. But because a bit represents the
smallest amount of information possible, more complex information can be conveyed with multiple
bits. (By saying that a bit conveys a "small" amount of information, I surely don't mean that the
information borders on the unimportant. Indeed, the yellow ribbon is a very important bit to the two

people concerned with it.)

"Listen, my children, and you shall hear / Of the midnight ride of Paul Revere," wrote Henry
Wadsworth Longfellow, and while he might not have been historically accurate when describing how
Paul Revere alerted the American colonies that the British had invaded, he did provide a
thoughtprovoking example of the use of bits to communicate important information:

He said to his friend "If the British march

By land or sea from the town to-night,

Hang a lantern aloft in the belfry arch

Of the North Church tower as a special light,—

One, if by land, and two, if by sea..."

To summarize, Paul Revere's friend has two lanterns. If the British are invading by land, he will put
just one lantern in the church tower. If the British are coming by sea, he will put both lanterns in the
church tower.

However, Longfellow isn't explicitly mentioning all the possibilities. He left unspoken a third
possibility, which is that the British aren't invading just yet. Longfellow implies that this possibility
will be conveyed by the absence of lanterns in the church tower.

Let's assume that the two lanterns are actually permanent fixtures in the church tower. Normally they
aren't lit:

or

i

s

the British are coming by sea.

Each lantern is a bit. A lit lantern is a 1 bit and an unlit lantern is a 0 bit. Tony Orlando demonstrated
to us that only one bit is necessary to convey one of two possibilities. If Paul Revere needed only to
be alerted that the British were invading (and not where they were coming from), one lantern would
have been sufficient. The lantern would have been lit for an invasion and unlit for another evening of
peace.

Conveying one of three possibilities requires another lantern. Once that second lantern is present,
however, the two bits allows communicating one of four possibilities:

00 = The British aren't invading tonight.
01 = They're coming by land.
10 = They're coming by land.
11 = They're coming by sea.

What Paul Revere did by sticking to just three possibilities was actually quite sophisticated. In the
lingo of communication theory, he used redundancy to counteract the effect of noise. The word noise
is used in communication theory to refer to anything that interferes with communication. Static on a
telephone line is an obvious example of noise that interferes with a telephone communication.
Communication over the telephone is usually successful, nevertheless, even in the presence of noise
because spoken language is heavily redundant. We don't need to hear every syllable of every word in
order to understand what's being said.

In the case of the lanterns in the church tower, noise can refer to the darkness of the night and the

distance of Paul Revere from the tower, both of which might prevent him from distinguishing one
lantern from the other. Here's the crucial passage in Longfellow's poem:

And lo! As he looks, on the belfry's height

A glimmer, and then a gleam of light!

He springs to the saddle, the bridle he turns,
But lingers and gazes, till full on his sight

A second lamp in the belfry burns!

It certainly doesn't sound as if Paul Revere was in a position to figure out exactly which one of the
two lanterns was first lit.

The essential concept here is that information represents a choice among two or more possibilities.
For example, when we talk to another person, every word we speak is a choice among all the words
in the dictionary. If we numbered all the words in the dictionary from 1 through 351,482, we could
just as accurately carry on conversations using the numbers rather than words. (Of course, both
participants would need dictionaries where the words are numbered identically, as well as plenty of
patience.)

The flip side of this is that any information that can be reduced to a choice among two or more
possibilities can be expressed using bits. Needless to say, there are plenty of forms of human
communication that do not represent choices among discrete possibilities and that are also vital to
our existence. This is why people don't form romantic relationships with computers. (Let's hope they
don't, anyway.) If you can't express something in words, pictures, or sounds, you're not going to be
able to encode the information in bits. Nor would you want to.

A thumb up or a thumb down is one bit of information. And two thumbs up or down—such as the
thumbs of film critics Roger Ebert and the late Gene Siskel when they rendered their final verdicts on
the latest movies—convey two bits of information. (We'll ignore what they actually had to say about
the movies; all we care about here are their thumbs.) Here we have four possibilities that can be
represented with a pair of bits:

00 = They both hated it.
01 = Siskel hated it; Ebert loved it.
10 = Siskel loved it; Ebert hated it.
11 = They both loved it.

The first bit is the Siskel bit, which is 0 if Siskel hated the movie and 1 if he liked it. Similarly, the
second bit is the Ebert bit.

So if your friend asked you, "What was the verdict from Siskel and Ebert about that movie Impolite
Encounter?" instead of answering, "Siskel gave it a thumbs up and Ebert gave it a thumbs down" or
even "Siskel liked it; Ebert didn't,” you could have simply said, "One zero." As long as your friend
knew which was the Siskel bit and which was the Ebert bit, and that a 1 bit meant thumbs up and a 0
bit meant thumbs down, your answer would be perfectly understandable. But you and your friend have
to know the code.

We could have declared initially that a 1 bit meant a thumbs down and a 0 bit meant a thumbs up. That
might seem counterintuitive. Naturally, we like to think of a 1 bit as representing something
affirmative and a O bit as the opposite, but it's really just an arbitrary assignment. The only

requirement is that everyone who uses the code must know what the 0 and 1 bits mean.

The meaning of a particular bit or collection of bits is always understood contextually. The meaning
of a yellow ribbon around a particular oak tree is probably known only to the person who put it there
and the person who's supposed to see it. Change the color, the tree, or the date, and it's just a
meaningless scrap of cloth. Similarly, to get some useful information out of Siskel and Ebert's hand
gestures, at the very least we need to know what movie is under discussion.

If you maintained a list of the movies that Siskel and Ebert reviewed and how they voted with their
thumbs, you could add another bit to the mix to include your own opinion. Adding this third bit
increases the number of different possibilities to eight:

000 = Siskel hated it; Ebert hated it; I hated it.
001 = Siskel hated it; Ebert hated it; I loved it.
010 = Siskel hated it; Ebert loved it; I hated it.
011 = Siskel hated it; Ebert loved it; I loved it.
100 = Siskel loved it; Ebert hated it; I hated it.
101 = Siskel loved it; Ebert hated it; I loved it.
110 = Siskel loved it; Ebert loved it; I hated it.
111 = Siskel loved it; Ebert loved it; I loved it.

One bonus of using bits to represent this information is that we know that we've accounted for all the
possibilities. We know there can be eight and only eight possibilities and no more or fewer. With 3
bits, we can count only from zero to seven. There are no more 3-digit binary numbers.

Now, during this description of the Siskel and Ebert bits, you might have been considering a very
serious and disturbing question, and that question is this: What do we do about Leonard Maltin's
Movie & Video Guide? After all, Leonard Maltin doesn't do the thumbs up and thumbs down thing,
Leonard Maltin rates the movies using the more traditional star system.

To determine how many Maltin bits we need, we must first know a few things about his system.
Maltin gives a movie anything from 1 star to 4 stars, with half stars in between. (Just to make this
interesting, he doesn't actually award a single star; instead, the movie is rated as a BOMB.) There are
seven possibilities, which means that we can represent a particular rating using just 3 bits:

000 = BOMB
001 = *%
010 = **

011 = **1%
100 = stk
101 = **+*L5
110 = sokokok

"What about 111?" you may ask. Well, that code doesn't mean anything. It's not defined. If the binary
code 111 were used to represent a Maltin rating, you'd know that a mistake was made. (Probably a
computer made the mistake because people never do.)

You'll recall that when we had two bits to represent the Siskel and Ebert ratings, the leftmost bit was
the Siskel bit and the rightmost bit was the Ebert bit. Do the individual bits mean anything here? Well,

sort of. If you take the numeric value of the bit code, add 2, and then divide by 2, that will give you
the number of stars. But that's only because we defined the codes in a reasonable and consistent
manner. We could just as well have defined the codes this way:

000 = ***
001 = *%

010 = **15
011 = sk
101 = **+*15
110 = **

111 = BOMB

This code is just as legitimate as the preceding code so long as everybody knows what it means.

If Maltin ever encountered a movie undeserving of even a single full star, he could award a half star.
He would certainly have enough codes for the half-star option. The codes could be redefined like so:

000 = MAJOR BOMB
001 = BOMB

010 = *%

011 = **

100 = **+1%

107 = stk

110 = ***14

117 = setekek

But if he then encountered a movie not even worthy of a half star and decided to award no stars
(ATOMIC BOMB?), he'd need another bit. No more 3-bit codes are available.

The magazine Entertainment Weekly gives grades, not only for movies but for television shows,
CDs, books, CD-ROMs, Web sites, and much else. The grades range from A+ straight down to F
(although it seems that only Pauly Shore movies are worthy of that honor). If you count them, you see
13 possible grades. We would need 4 bits to represent these grades:

0000 =F
0001 = D-
0010=D
0011 =D+
0100 = C-
0101 =C
0110 = C+
0111 =B-
1000 =B
1001 = B+
1010 = A-
1011 =A
1100 = A+

We have three unused codes: 1101, 1110, and 1111, for a grand total of 16.

Whenever we talk about bits, we often talk about a certain number of bits. The more bits we have, the
greater the number of different possibilities we can convey.

It's the same situation with decimal numbers, of course. For example, how many telephone area codes
are there? The area code is three decimal digits long, and if all of them are used (which they aren't,
but we'll ignore that), there are 10°, or 1000, codes, ranging from 000 through 999. How many 7-digit
phone numbers are possible within the 212 area code? That's 107, or 10,000,000. How many phone
numbers can you have with a 212 area code and a 260 prefix? That's 10%, or 10,000.

Similarly, in binary the number of possible codes is always equal to 2 to the power of the number of
bits:

Number of Bits | Number of Codes

1 2l=»

2 22 =4

3 =8

4 24 =16

5 22 =132

6 26 =64

7 27 =128

8 28 = 256

9 29 =512
10 210 = 1024

Every additional bit doubles the number of codes.

If you know how many codes you need, how can you calculate how many bits you need? In other
words, how do you go backward in the preceding table?

The method you use is something called the base two logarithm. The logarithm is the opposite of the
power. We know that 2 to the 7th power equals 128. The base two logarithm of 128 equals 7. To use
more mathematical notation, this statement

27 =128
is equivalent to this statement:

logy128 = 7

So if the base two logarithm of 128 is 7, and the base two logarithm of 256 is 8, then what's the base
two logarithm of 2007 It's actually about 7.64, but we really don't have to know that. If we needed to
represent 200 different things with bits, we'd need 8 bits.

Bits are often hidden from casual observation deep within our electronic appliances. We can't see the
bits encoded in our compact discs or in our digital watches or inside our computers. But sometimes
the bits are in clear view.

Here's one example. If you own a camera that uses 35-millimeter film, take a look at a roll of film.
Hold it this way:

You'll see a checkerboard-like grid of silver and black squares that I've numbered 1 through 12 in the
diagram. This is called DX-encoding. These 12 squares are actually 12 bits. A silver square means a
1 bit and a black square means a 0 bit. Square 1 and square 7 are always silver (1).

What do the bits mean? You might be aware that some films are more sensitive to light than others.
This sensitivity to light is often called the film speed. A film that's very sensitive to light is said to be
fast because it can be exposed very quickly. The speed of the film is indicated by the film's ASA
(American Standards Association) rating, the most popular being 100, 200, and 400. This ASA rating
isn't only printed on the box and the film's cassette but is also encoded in bits.

There are 24 standard ASA ratings for photographic film. Here they are:

25 |32 |40

50 |64 |80

100 | 125 | 160
200 |250 |320
400 | 500 640
800 |1000|1250
1600 | 2000 | 2500

3200 | 4000 | 5000

How many bits are required to encode the ASA rating? The answer is 5. We know that 2¢ equals 16,
so that's too few. But 2° equals 32, which is more than sufficient.

The bits that correspond to the film speed are shown in the following table:

Square 2 Square 3 Square 4 Square 5 Square 6 Film Speed

0 0 0 1 0 25

0 0 0 0 1 32

0 0 0 1 1 40

1 0 0 1 0 50

1 0 0 0 1 64

1 0 0 1 1 80

0 1 0 1 0 100
0 1 0 0 1 125
0 1 0 1 1 160
1 1 0 1 0 200
1 1 0 0 1 250
1 1 0 1 1 320
0 0 1 1 0 400
0 0 1 0 1 500
0 0 1 1 1 640
1 0 1 1 0 800
1 0 1 0 1 1000
1 0 1 1 1 1250
0 1 1 1 0 1600
0 1 1 0 1 2000
0 1 1 1 1 2500
1 1 1 1 0 3200
1 1 1 0 1 4000
1 1 1 1 1 5000

Most modern 35-millimeter cameras use these codes. (Exceptions are cameras on which you must set
the exposure manually and cameras that have built-in light meters but require you to set the film speed
manually.) If you take a look inside the camera where you put the film, you should see six metal
contacts that correspond to squares 1 through 6 on the film canister. The silver squares are actually
the metal of the film cassette, which is a conductor. The black squares are paint, which is an
insulator.

The electronic circuitry of the camera runs a current into square 1, which is always silver. This
current will be picked up (or not picked up) by the five contacts on squares 2 through 6, depending on
whether the squares are bare silver or are painted over. Thus, if the camera senses a current on
contacts 4 and 5 but not on contacts 2, 3, and 6, the film speed is 400 ASA. The camera can then
adjust film exposure accordingly.

Inexpensive cameras need read only squares 2 and 3 and assume that the film speed is 50, 100, 200,
or 400 ASA.

Most cameras don't read or use squares 8 through 12. Squares 8, 9, and 10 encode the number of
exposures on the roll of film, and squares 11 and 12 refer to the exposure latitude, which depends on
whether the film is for black-and-white prints, for color prints, or for color slides.

Perhaps the most common visual display of binary digits is the ubiquitous Universal Product Code
(UPCQ), that little bar code symbol that appears on virtually every packaged item that we purchase
these days. The UPC has come to symbolize one of the ways computers have crept into our lives.

Although the UPC often inspires fits of paranoia, it's really an innocent little thing, invented for the
purpose of automating retail checkout and inventory, which it does fairly successfully. When it's used
with a well-designed checkout system, the consumer can have an itemized sales receipt, which isn't
possible with conventional cash registers.

Of interest to us here is that the UPC is a binary code, although it might not seem like one at first. So it
will be instructive to decode the UPC and examine how it works.

In its most common form, the UPC is a collection of 30 vertical black bars of various widths, divided
by gaps of various widths, along with some digits. For example, this is the UPC that appears on the
10 34-ounce can of Campbell's Chicken Noodle Soup:

gt aIuoa" 0291 7

We're tempted to try to visually interpret the UPC in terms of thin bars and black bars, narrow gaps
and wide gaps, and indeed, that's one way to look at it. The black bars in the UPC can have four
different widths, with the thicker bars being two, three, and four times the width of the thinnest bar.
Similarly, the wider gaps between the bars are two, three, and four times the width of the thinnest
gap.

But another way to look at the UPC is as a series of bits. Keep in mind that the whole bar code
symbol isn't exactly what the scanning wand "sees" at the checkout counter. The wand doesn't try to
interpret the numbers at the bottom, for example, because that would require a more sophisticated
computing technique known as optical character recognition, or OCR. Instead, the scanner sees just
a thin slice of this whole block. The UPC is as large as it is to give the checkout person something to
aim the scanner at. The slice that the scanner sees can be represented like this:

This looks almost like Morse code, doesn't it?

As the computer scans this information from left to right, it assigns a 1 bit to the first black bar it
encounters, a 0 bit to the next white gap. The subsequent gaps and bars are read as series of bits 1, 2,
3, or 4 bits in a row, depending on the width of the gap or the bar. The correspondence of the scanned
bar code to bits is simply:

il HIE I H]l HI EI EIIIE IR EEE I EE NI I II

1818668118161 166010681 160166681 16810801181008118181816111860161188118116118618681118118811814881a8181

So the entire UPC is simply a series of 95 bits. In this particular example, the bits can be grouped as
follows:

Bits Meaning

101 Left-hand guard pattern
00011017

0110001

R []Q'l Left-side digits

0001101

0001101

0001101 _

01010 Center guard pattern
11100107

1100110

1101100

(001110 Right-side digits
1100110

1000100 _

101 Right-hand guard pattern

The first 3 bits are always 101. This is known as the left-hand guard pattern, and it allows the
computer-scanning device to get oriented. From the guard pattern, the scanner can determine the width

of the bars and gaps that correspond to single bits. Otherwise, the UPC would have to be a specific
size on all packages.

The left-hand guard pattern is followed by six groups of 7 bits each. Each of these is a code for a
numeric digit O through 9, as I'll demonstrate shortly. A 5-bit center guard pattern follows. The
presence of this fixed pattern (always 01010) is a form of built-in error checking. If the computer
scanner doesn't find the center guard pattern where it's supposed to be, it won't acknowledge that it
has interpreted the UPC. This center guard pattern is one of several precautions against a code that
has been tampered with or badly printed.

The center guard pattern is followed by another six groups of 7 bits each, which are then followed by
a right-hand guard pattern, which is always 101. As I'll explain later, the presence of a guard pattern
at the end allows the UPC code to be scanned backward (that is, right to left) as well as forward.

So the entire UPC encodes 12 numeric digits. The left side of the UPC encodes 6 digits, each
requiring 7 bits. You can use the following table to decode these bits:

Table 9-1. Left-Side Codes

0001101 =0 0110001 =5
0011001 =1 0101111=6
0010011 =2 0111011 =7
0111101 =3 0110111 =8

0100011 =4 0001011 =9

Notice that each 7-bit code begins with a 0 and ends with a 1. If the scanner encounters a 7-bit code
on the left side that begins with a 1 or ends with a 0, it knows either that it hasn't correctly read the
UPC code or that the code has been tampered with. Notice also that each code has only two groups of
consecutive 1 bits. This implies that each digit corresponds to two vertical bars in the UPC code.

You'll see that each code in this table has an odd number of 1 bits. This is another form of error and
consistency checking known as parity. A group of bits has even parity if it has an even number of 1
bits and odd parity if it has an odd number of 1 bits. Thus, all of these codes have odd parity.

To interpret the six 7-bit codes on the right side of the UPC, use the following table:

Table 9-2. Right-Side Codes

1110010 =0 1001110 =5
1100110 =1 1010000 = 6
1101100 =2 1000100 =7
1000010 = 3 1001000 = 8

1011100 =4 1110100 =9

These codes are the complements of the earlier codes: Wherever a 0 appeared is now a 1, and vice
versa. These codes always begin with a 1 and end with a 0. In addition, they have an even number of
1 bits, which is even parity.

So now we're equipped to decipher the UPC. Using the two preceding tables, we can determine that
the 12 digits encoded in the 10 34-ounce can of Campbell's Chicken Noodle Soup are

0 51000 01251 7

This is very disappointing. As you can see, these are precisely the same numbers that are
conveniently printed at the bottom of the UPC. (This makes a lot of sense because if the scanner can't
read the code for some reason, the person at the register can manually enter the numbers. Indeed,
you've undoubtedly seen this happen.) We didn't have to go through all that work to decode them, and
moreover, we haven't come close to decoding any secret information. Yet there isn't anything left in
the UPC to decode. Those 30 vertical lines resolve to just 12 digits.

The first digit (a O in this case) is known as the number system character. A 0 means that this is a
regular UPC code. If the UPC appeared on variable-weight grocery items such as meat or produce,
the code would be a 2. Coupons are coded with a 5.

The next five digits make up the manufacturer code. In this case, 51000 is the code for the Campbell
Soup Company. All Campbell products have this code. The five digits that follow (01251) are the
code for a particular product of that company, in this case, the code for a 10 34-ounce can of chicken
noodle soup. This product code has meaning only when combined with the manufacturer's code.
Another company's chicken noodle soup might have a different product code, and a product code of
01251 might mean something totally different from another manufacturer.

Contrary to popular belief, the UPC doesn't include the price of the item. That information has to be
retrieved from the computer that the store uses in conjunction with the checkout scanners.

The final digit (a 7 in this case) is called the modulo check character. This character enables yet
another form of error checking. To examine how this works, let's assign each of the first 11 digits (0
51000 01251 in our example) a letter:

A BCDEF GHIJK

Now calculate the following:

3Xx(A+C+E+G+I+K)+(B+D+F+H+J)

and subtract that from the next highest multiple of 10. That's called the modulo check character. In the
case of Campbell's Chicken Noodle Soup, we have

3x(0+1+0+0+2+1)+(5+0+0+1+5)=3x4+11=23

The next highest multiple of 10 is 30, so

30-23=7

and that's the modulo check character printed and encoded in the UPC. This is a form of redundancy.
If the computer controlling the scanner doesn't calculate the same modulo check character as the one
encoded in the UPC, the computer won't accept the UPC as valid.

Normally, only 4 bits would be required to specify a decimal digit from 0 through 9. The UPC uses 7
bits per digit. Overall, the UPC uses 95 bits to encode only 11 useful decimal digits. Actually, the
UPC includes blank space (equivalent to nine 0 bits) at both the left and the right side of the guard
pattern. That means the entire UPC requires 113 bits to encode 11 decimal digits, or over 10 bits per
decimal digit!

Part of this overkill is necessary for error checking, as we've seen. A product code such as this
wouldn't be very useful if it could be easily altered by a customer wielding a felt-tip pen.

The UPC also benefits by being readable in both directions. If the first digits that the scanning device
decodes have even parity (that is, an even number of 1 bits in each 7-bit code), the scanner knows that
it's interpreting the UPC code from right to left. The computer system then uses this table to decode
the right-side digits:

Table 9-3. Right-Side Codes in Reverse

0100111 =0 0111001 =5
0110011 =1 0000101 =6

0011011 =2 0010001 =7
0100001 =3 0001001 =8

0011101 =4 0010111 =9

and this table for the left-side digits:

Table 9-4. Left-Side Codes in Reverse

1011000 = 0 1000110 =5
1001100 =1 1111010 =6
1100100 =2 1101110=7
1011110 =3 1110110=18

1100010 =4 1101000 =9

These 7-bit codes are all different from the codes read when the UPC is scanned from left to right.
There's no ambiguity.

We began looking at codes in this book with Morse code, composed of dots, dashes, and pauses
between the dots and dashes. Morse code doesn't immediately seem like it's equivalent to zeros and
ones, yet it is.

Recall the rules of Morse code: A dash is three times as long as a dot. The dots and dashes of a single
letter are separated by a pause the length of a dot. Letters within a word are separated by pauses
equal in length to a dash. Words are separated by pauses equal in length to two dashes.

Just to simplify this analysis a bit, let's assume that a dash is twice the length of a dot rather than three
times. That means that a dot can be a 1 bit and a dash can be two 1 bits. Pauses are 0 bits.

Here's the basic table of Morse code from Chapter 2:

A o] N S
B — K —— A -

L —— L — U vomm
D - M — Y —
E . N - W I
F — 'S i X —
G — P S— —
H pr—— Q —— 7 —
I % R o

Here's the table converted to bits:

A 1101100 J 1101101101100 |S 1010100

B 11010101600 |K 110101100 T (1100

C 116010110100 |L |1011010100 U (1010601100

D 11010100 M|1101100 V /1010101100
E 100 N (110160 W|1011601100

F 1010110160 |0 |1101101100 X 1110101061100
G|1101101060 P 1101161101600 |Y 1101601101100

H|101010100 Q (1161101011060 |Z |11011010100

I 10100 R |10110100

Notice that all the codes begin with a 1 bit and end with a pair of 0 bits. The pair of 0 bits represents
the pause between letters in the same word. The code for the space between words is another pair of

0 bits. So the Morse code for "hi there" is normally given as
eeee oo EEE 0060 ¢ omme o

but Morse code using bits can look like the cross section of the UPC code:
EEER ER W EEER R ENE B

181010100101000011001010101001001011010010000

In terms of bits, Braille is much simpler than Morse code. Braille is a 6-bit code. Each character is
represented by an array of six dots, and each of the six dots can be either raised or not raised. As I
explained in Chapter 3, the dots are commonly numbered 1 through 6:

1 LY 4
z ¥y 5
300 ¢

The word "code" (for example) is represented by the Braille symbols:
e o o0 o-
T Y Y
® - . s
If a raised dot is 1 and a flat dot is 0, each of the characters in Braille can be represented by a 6-bit
binary number. The four Braille symbols for the letters in the word "code" are then simply:

100100 101010 100110 100010

where the leftmost bit corresponds to the 1 position in the grid, and the rightmost bit corresponds to
the 6 position.

As we shall see later in this book, bits can represent words, pictures, sounds, music, and movies as
well as product codes, film speeds, movie ratings, an invasion of the British army, and the intentions
of one's beloved. But most fundamentally, bits are numbers. All that needs to be done when bits
represent other information is to count the number of possibilities. This determines the number of bits
that are needed so that each possibility can be assigned a number.

Bits also play a part in logic, that strange blend of philosophy and mathematics for which a primary
goal is to determine whether certain statements are true or false. True and false can also be 1 and 0.

Chapter 10. Logic and Switches

What is truth? Aristotle thought that logic had something to do with it. The collection of his teachings
known as the Organon (which dates from the fourth century B.C.E.) is the earliest extensive writing
on the subject of logic. To the ancient Greeks, logic was a means of analyzing language in the search
for truth and thus was considered a form of philosophy. The basis of Aristotle's logic was the
syllogism. The most famous syllogism (which isn't actually found in the works of Aristotle) is

All men are mortal;
Socrates is a man;

Hence, Socrates is mortal.
In a syllogism, two premises are assumed to be correct, and from these a conclusion is deduced.

The mortality of Socrates might seem straightforward enough, but there are many varieties of
syllogisms. For example, consider the following two premises, proposed by the nineteenth-century
mathematician Charles Dodgson (also known as Lewis Carroll):

All philosophers are logical;

An illogical man is always obstinate.

The conclusion isn't obvious at all. (It's "Some obstinate persons are not philosophers." Notice the
unexpected and disturbing appearance of the word "some."

For over two thousand years, mathematicians wrestled with Aristotle's logic, attempting to corral it
using mathematical symbols and operators. Prior to the nineteenth century, the only person to come
close was Gottfried Wilhelm von Leibniz (1648-1716), who dabbled with logic early in life but then
went on to other interests (such as independently inventing calculus at the same time as Isaac
Newton).

And then came George Boole.

George Boole was born in England in 1815 to a world where the odds were certainly stacked against
him. Because he was the son of a shoe-maker and a former maid, Britain's rigid class structure would
normally have prevented Boole from achieving anything much different from his ancestors. But aided
by an inquisitive mind and his helpful father (who had strong interests in science, mathematics, and
literature), young George gave himself the type of education normally the privilege of upper-class
boys; his studies included Latin, Greek, and mathematics. As a result of his early papers on
mathematics, in 1849 Boole was appointed the first Professor of Mathematics at Queen's College,
Cork, in Ireland.

Several mathematicians in the mid-1800s had been working on a mathematical definition of logic
(most notably Augustus De Morgan), but it was Boole who had the real conceptual breakthrough, first
in the short book The Mathematical Analysis of Logic, Being an Essay Towards a Calculus of
Deductive Reasoning (1847) and then in a much longer and more ambitious text, An Investigation of
the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities
(1854), more conveniently referred to as The Laws of Thought. Boole died in 1864 at the age of 49
after hurrying to class in the rain and contracting pneumonia.

The title of Boole's 1854 book suggests an ambitious motivation: Because the rational human brain
uses logic to think, if we were to find a way in which logic can be represented by mathematics, we
would also have a mathematical description of how the brain works. Of course, nowadays this view
of the mind seems to us quite naive. (Either that or it's way ahead of its time.)

Boole invented a kind of algebra that looks and acts very much like conventional algebra. In
conventional algebra, the operands (which are usually letters) stand for numbers, and the operators
(most often + and x) indicate how these numbers are to be combined. Often we use conventional
algebra to solve problems such as this: Anya has 3 pounds of tofu. Betty has twice as much tofu as
Anya. Carmen has 5 pounds more tofu than Betty. Deirdre has three times the tofu that Carmen has.
How much tofu does Deirdre have?

To solve this problem, we first convert the English to arithmetical statements, using four letters to
stand for the pounds of tofu that each of the four women has:

A=3

B=2xA

C=B+5

D=3xC
We can combine these four statements into one statement by substitution and then finally perform the
additions and multiplications:

D=3xC

D=3x(B+5)

D=3x(2xA)+5)

D=3x(2x3)+5)
D =33

When we do conventional algebra, we follow certain rules. These rules have probably become so
ingrained in our practice that we no longer think of them as rules and might even forget their names.
But rules indeed underlie all the workings of any form of mathematics.

The first rule is that addition and multiplication are commutative. That means we can switch around
the symbols on each side of the operations:

A+B=B+A
AxB=BxA

By contrast, subtraction and division are not commutative.
Addition and multiplication are also associative, that is

A+(B+C)=(A+B)+C
AxBxC)=(AxB)xC

And finally, multiplication is said to be distributive over addition:
Ax(B+C)=(AxB)+(AxQC)

Another characteristic of conventional algebra is that it always deals with numbers, such as pounds of
tofu or numbers of ducks or distances that a train travels or the ages of family members. It was
Boole's genius to make algebra more abstract by divorcing it from concepts of number. In Boolean
algebra (as Boole's algebra was eventually called), the operands refer not to numbers but instead to
classes. A class is simply a group of things, what in later times came to be known as a set.

Let's talk about cats. Cats can be either male or female. For convenience, we can use the letter M to
refer to the class of male cats and F to refer to the class of female cats. Keep in mind that these two
symbols do not represent numbers of cats. The number of male and female cats can change by the
minute as new cats are born and old cats (regrettably) pass away. The letters stand for classes of cats
—cats with specific characteristics. Instead of referring to male cats, we can just say "M."

We can also use other letters to represent the color of the cats: For example, T can refer to the class
of tan cats, B can be the class of black cats, W the class of white cats, and O the class of cats of all
"other" colors—all cats not in the class T, B, or W.

Finally (at least as far as this example goes), cats can be either neutered or unneutered. Let's use the
letter N to refer to the class of neutered cats and U for the class of unneutered cats.

In conventional (numeric) algebra, the operators + and x are used to indicate addition and
multiplication. In Boolean algebra, the same + and x symbols are used, and here's where things might
get confusing. Everybody knows how to add and multiply numbers in conventional algebra, but how
do we add and multiply classes?

Well, we don't actually add and multiply in Boolean algebra. Instead, the + and x symbols mean
something else entirely.

The + symbol in Boolean algebra means a union of two classes. A union of two classes is everything
in the first class combined with everything in the second class. For example, B + W represents the
class of all cats that are either black or white.

The x symbol in Boolean algebra means an intersection of two classes. An intersection of two
classes is everything that is in both the first class and the second class. For example, F x T represents
the class of all cats that are both female and tan. As in conventional algebra, we can write F x T as
F-T or simply FT (which is what Boole preferred). You can think of the two letters as two adjectives
strung together: "female tan" cats.

To avoid confusion between conventional algebra and Boolean algebra, sometimes the symbols U
and n are used for union and intersection instead of + and x. But part of Boole's liberating influence
on mathematics was to make the use of familiar operators more abstract, so I've decided to stick with
his decision not to introduce new symbols into his algebra.

The commutative, associative, and distributive rules all hold for Boolean algebra. What's more, in
Boolean algebra the + operator is distributive over the x operator. This isn't true of conventional
algebra:

W+ ([BxF)=(W+B)x(W+F)

The union of white cats and black female cats is the same as the intersection of two unions: the union
of white cats and black cats, and the union of white cats and female cats. This is somewhat difficult to
grasp, but it works.

Two more symbols are necessary to complete Boolean algebra. These two symbols might look like
numbers, but they're really not because they're sometimes treated a little differently than numbers. The
symbol 1 in Boolean algebra means "the universe"—that is, everything we're talking about. In this
example, the symbol 1 means "the class of all cats." Thus,

M+F=1
This means that the union of male cats and female cats is the class of all cats. Similarly, the union of
tan cats and black cats and white cats and other colored cats is also the class of all cats:

T+B+W+0=1

And you achieve the class of all cats this way, too:
N+U=1

The 1 symbol can be used with a minus sign to indicate the universe excluding something. For
example,

1-M
is the class of all cats except the male cats. The universe excluding all male cats is the same as the
class of female cats:

1-M=F
The other symbol that we need is the 0, and in Boolean algebra the 0 means an empty class—a class

of nothing. The empty class results when we take an intersection of two mutually exclusive classes,
for example, cats that are both male and female:

FxM=0

Notice that the 1 and 0 symbols sometimes work the same way in Boolean algebra as in conventional

algebra. For example, the intersection of all cats and female cats is the class of female cats:
1xF=F
The intersection of no cats and female cats is the class of no cats:
0xF=0
The union of no cats and all female cats is the class of female cats:
0+F=F
But sometimes the result doesn't look the same as in conventional algebra. For example, the union of
all cats and female cats is the class of all cats:
1+F=1
This doesn't make much sense in conventional algebra.

Because F is the class of all female cats, and (1 — F) is the class of all cats that aren't female, the
union of these two classes is 1:

F+(1-F) =1
and the intersection of the two classes is 0:
Fx(1-F)=0
Historically, this formulation represents an important concept in logic: It's called the Law of
Contradiction and indicates that something can't be both itself and the opposite of itself.
Where Boolean algebra really looks different from conventional algebra is in a statement like this:
FxF=F
The statement makes perfect sense in Boolean algebra: The intersection of female cats and female

cats is still the class of female cats. But it sure wouldn't look quite right if F referred to a number.
Boole considered

X? =X
to be the single statement that differentiates his algebra from conventional algebra. Another Boolean
statement that looks funny in terms of conventional algebra is this:

F+F=F

The union of female cats and female cats is still the class of female cats.
Boolean algebra provides a mathematical method for solving the syllogisms of Aristotle. Let's look at
the first two-thirds of that famous syllogism again, but now using gender-neutral language:

All persons are mortal;

Socrates is a person.

We'll use P to represent the class of all persons, M to represent the class of mortal things, and S to
represent the class of Socrates. What does it mean to say that "all persons are mortal"? It means that
the intersection of the class of all persons and the class of all mortal things is the class of all persons:

PxM=P
It would be wrong to say that P x M = M, because the class of all mortal things includes cats, dogs,
and elm trees.

To say, "Socrates is a person,” means that the intersection of the class containing Socrates (a very
small class) and the class of all persons (a much larger class) is the class containing Socrates:

SxP=S
Because we know from the first equation that P equals (P x M) we can substitute that into the second
equation:

Sx(PxM)=S
By the associative law, this is the same as

(SxP)xM=S§
But we already know that (S x P) equals S, so we can simplify by using this substitution:

SxM=S
And now we're finished. This formula tells us that the intersection of Socrates and the class of all
mortal things is S, which means that Socrates is mortal. If we found instead that (S x M) equaled O,

we'd conclude that Socrates wasn't mortal. If we found that (S x M) equaled M, the conclusion would
have to be that Socrates was the only mortal thing and everything else was immortal!

Using Boolean algebra might seem like overkill for proving the obvious fact (particularly considering
that Socrates proved himself mortal 2400 years ago), but Boolean algebra can also be used to
determine whether something satisfies a certain set of criteria. Perhaps one day you walk into a pet
shop and say to the salesperson, "I want a male cat, neutered, either white or tan; or a female cat,
neutered, any color but white; or I'll take any cat you have as long as it's black." And the salesperson
says to you, "So you want a cat from the class of cats represented by the following expression:

MxNxW+T)+(FxNx(1-W))+B
Right?" And you say, "Yes! Exactly!"

In verifying that the salesperson is correct, you might want to forgo the concepts of union and
intersection and instead switch to the words OR and AND. I'm capitalizing these words because the
words normally represent concepts in English, but they can also represent operations in Boolean
algebra. When you form a union of two classes, you're actually accepting things from the first class
OR the second class. And when you form an intersection, you're accepting only those things in both
the first class AND the second class. In addition, you can use the word NOT wherever you see a 1
followed by a minus sign. In summary,

m The + (previously known as a union) now means OR.

m The x (previously known as an intersection) now means AND.

m The 1 — (previously the universe without something) now means NOT.
So the expression can also be written like this:

(M AND N AND (W OR T)) OR (F AND N AND (NOT W)) OR B

This is very nearly what you said. Notice how the parentheses clarify your intentions. You want a cat
from one of three classes:

(M AND N AND (W OR T))
OR

(F AND N AND (NOT W))
OR

B

With this formula written down, the salesperson can perform something called a Boolean test.
Without making a big fuss about it, I've subtly shifted to a somewhat different form of Boolean
algebra. In this form of Boolean algebra, letters no longer refer to classes. Instead, the letters can now
be assigned numbers. The catch is that they can be assigned only the number 0 or 1. The numeral 1
means Yes, True, this particular cat satisfies these criteria. The numeral 0 means No, False, this cat
doesn't satisfy these criteria.

First the salesperson brings out an unneutered tan male. Here's the expression of acceptable cats:
MxNx(W+T)+(FxNx(1-W))+B

and here's how it looks with Os and 1s substituted:
(1x0x(0+1)+(0x0x(1-0)+0

Notice that the only symbols assigned 1s are M and T because the cat is male and tan.

What we must do now is simplify this expression. If it simplifies to 1, the cat satisfies your criteria; if
it simplifies to 0, the cat doesn't. While we're simplifying the expression, keep in mind that we're not
really adding and multiplying, although generally we can pretend that we are. Most of the same rules
apply when + means OR and x means AND. (Sometimes in modern texts the symbols /A and v are used
for AND and OR instead of x and +. But here's where the + and x signs perhaps make the most sense.)

When the x sign means AND, the possible results are

0x0=0
0x1=0
1x0=0
1x1=1

In other words, the result is 1 only if both the left operand AND the right operand are 1. This
operation works exactly the same way as regular multiplication, and it can be summarized in a little
table, similar to the way the addition and multiplication tables were shown in Chapter 8:

AND |01
0 00
1 01

When the + sign means OR, the possible results are

0+0=0

0+1=1
1+0=1
1+1=1

The result is 1 if either the left operand OR the right operand is 1. This operation produces results
very similar to those of regular addition, except that in this case 1 + 1 equals 1. The OR operation can
be summarized in another little table:

OR 0|1
0 01
1 (1)1

We're ready to use these tables to calculate the result of the expression

(1x0x1)+(0x0x1)+0=0+0+0=0
The result 0 means No, False, this kitty won't do.
Next the salesperson brings out a neutered white female. The original expression was
(MxNx(W+T)+(FxNx(1l-W))+B
Substitute the Os and 1s again:
Ox1x(1+0)+(1x1x(1-1)+0
And simplify it:
Ox1x1)+(1x1x0)+0=0+0+0=0
And another poor kitten must be rejected.

Next the salesperson brings out a neutered gray female. (Gray qualifies as an "other" color—not
white or black or tan.) Here's the expression:

(Ox1x(0+0)+(1x1x(1-0))+0
Now simplify it:
(O0x1x0)+(1x1x1)+0=0+1+0=1
The final result 1 means Yes, True, a kitten has found a home. (And it was the cutest one too!)

Later that evening, when the kitten is curled up sleeping in your lap, you wonder whether you could
have wired some switches and a lightbulb to help you determine whether particular kittens satisfied
your criteria. (Yes, you are a strange kid.) Little do you realize that you're about to make a crucial
conceptual breakthrough. You're about to perform some experiments that will unite the algebra of
George Boole with electrical circuitry and thus make possible the design and construction of
computers that work with binary numbers. But don't let that intimidate you.

To begin your experiment, you connect a lightbulb and battery as you would normally, but you use
two switches instead of one:

_

Switches connected in this way—one right after the other—are said to be wired in series. If you
close the left switch, nothing happens:

'y

T

A

_

Similarly, if you leave the left switch open and close the right switch, nothing happens. The lightbulb
lights up only if both the left switch and the right switch are closed, as shown on the next page.

o

 —

\”""/

II/- ¥ W

I\"‘— 1 +

==}

The key word here is and. Both the left switch and the right switch must be closed for the current to
flow through the circuit.

This circuit is performing a little exercise in logic. In effect, the lightbulb is answering the question
"Are both switches closed?" We can summarize the workings of this circuit in the following table:

Left Switch Right Switch | Lightbulb

Open Open Not lit

Open Closed Not lit
Closed Open Not lit
Closed Closed Lit

In the preceding chapter, we saw how binary digits, or bits, can represent information—everything
from numbers to the direction of Roger Ebert's thumb. We were able to say that a 0 bit means "Ebert's
thumb points down" and a 1 bit means "Ebert's thumb points up." A switch has two positions, so it
can represent a bit. We can say that a 0 means "switch is open" and a 1 means "switch is closed." A
lightbulb has two states; hence it too can represent a bit. We can say that a 0 means "lightbulb is not
lit" and a 1 means "lightbulb is lit." Now we simply rewrite the table:

Left Switch | Right Switch | Lightbulb

0 0 0
0 1 0
1 0 0
1 1 1

Notice that if we swap the left switch and the right switch, the results are the same. We really don't
have to identify which switch is which. So the table can be rewritten to resemble the AND and OR
tables that were shown earlier:

Switches in Series [0 |1
0 00
1 01

And indeed, this is the same as the AND table. Check it out:

AND 01
0 00
1 0|1

This simple circuit is actually performing an AND operation in Boolean algebra.

Now try connecting the two switches a little differently:

i
ay

These switches are said to be connected in parallel. The difference between this and the preceding
connection is that this lightbulb will light if you close the top switch:

or close the bottom switch:

or close both switches:

I/—C
Ir,r L
e

 ——— J

==

The lightbulb lights if the top switch or the bottom switch is closed. The key word here is or.

Again, the circuit is performing an exercise in logic. The lightbulb answers the question, "Is either
switch closed?" The following table summarizes how this circuit works:

Left Switch Right Switch Lightbulb

Open Open Not lit
Open Closed Lit
Closed Open Lit
Closed Closed Lit

Again, using 0 to mean an open switch or an unlit lightbulb and 1 to mean a closed switch or a lit
lightbulb, this table can be rewritten this way:

Left Switch | Right Switch | Lightbulb

0 0 0
0 1 1
1 0 1
1 1 1

Again it doesn't matter if the two switches are swapped, so the table can also be rewritten like this:

Switches in Parallel | 0 | 1
0 01

1 11

And you've probably already guessed that this is the same as the Boolean OR:

OR0/1
0 01

1 (1)1

which means that two switches in parallel are performing the equivalent of a Boolean OR operation.

When you originally entered the pet shop, you told the salesperson, "I want a male cat, neutered,
either white or tan; or a female cat, neutered, any color but white; or I'll take any cat you have as long
as it's black," and the salesperson developed this expression:

MxNxW+T)+(FxNx(1-W))+B

Now that you know that two switches wired in series perform a logical AND (which is represented
by a x sign) and two switches in parallel perform a logical OR (which is represented by the + sign),
you can wire up eight switches like so:

W
M [N
| et i W e
. B ,/’: o

h S

Each switch in this circuit is labeled with a letter—the same letters as in the Boolean expression. (W
means NOT W and is an alternative way to write 1 — W). Indeed, if you go through the wiring
diagram from left to right starting at the top and moving from top to bottom, you'll encounter the letters
in the same order that they appear in the expression. Each x sign in the expression corresponds to a
point in the circuit where two switches (or groups of switches) are connected in series. Each + sign
in the expression corresponds to a place in the circuit where two switches (or groups of switches) are
connected in parallel.

As you'll recall, the salesperson first brought out an unneutered tan male. Close the appropriate
switches:

o J/

1
I + |

Although the M, T, and NOT W switches are closed, we don't have a complete circuit to light up the
lightbulb. Next the salesperson brought out a neutered white female:

. J

1!
I + |

Again, the right switches aren't closed to complete a circuit. But finally, the salesperson brought out a
neutered gray female:

" 4 g3
F N W
.'fr . & T i ¥ ¥ -/I
L Bl P

\

r
1 + |

And that's enough to complete the circuit, light up the lightbulb, and indicate that the kitten satisfies all
your criteria.

George Boole never wired such a circuit. He never had the thrill of seeing a Boolean expression
realized in switches, wires, and lightbulbs. One obstacle, of course, was that the incandescent
lightbulb wasn't invented until 15 years after Boole's death. But Samuel Morse had demonstrated his
telegraph in 1844—ten years before the publication of Boole's The Laws of Thought—and it would
be simple to substitute a telegraph sounder for the lightbulb in the circuit shown above.

But nobody in the nineteenth century made the connection between the ANDs and ORs of Boolean
algebra and the wiring of simple switches in series and in parallel. No mathematician, no electrician,
no telegraph operator, nobody. Not even that icon of the computer revolution Charles Babbage
(1792-1871), who had corresponded with Boole and knew his work, and who struggled for much of
his life designing first a Difference Engine and then an Analytical Engine that a century later would be
regarded as the precursors to modern computers. What might have helped Babbage, we know now,
was the realization that perhaps instead of gears and levers to perform calculations, a computer might
better be built out of telegraph relays.

Yes, telegraph relays.

Chapter 11. Gates (Not Bill)

In some far-off distant time, when the twentieth century history of primitive computing is just a murky
memory, someone is likely to suppose that devices known as logic gates were named after the famous
co-founder of Microsoft Corporation. Not quite. As we'll soon see, logic gates bear a much greater
resemblance to those ordinary gates through which pass water or people. Logic gates perform simple
tasks in logic by blocking or letting through the flow of electrical current.

You'll recall how in the last chapter you went into a pet shop and announced, "I want a male cat,
neutered, either white or tan; or a female cat, neutered, any color but white; or I'll take any cat you
have as long as it's black.” This is summarized by the following Boolean expression:

MxNxW+T)+(FxNx(1-W))+B

and also by this circuit made up of switches and a lightbulb:

>

—""0
PR, g

s H‘,/: y,

\" 1 +

n
)

Such a circuit is sometimes called a network, except that nowadays that word is used much more
often to refer to connected computers rather than an assemblage of mere switches.

Although this circuit contains nothing that wasn't invented in the nineteenth century, nobody in that
century ever realized that Boolean expressions could be directly realized in electrical circuits. This
equivalence wasn't discovered until the 1930s, most notably by Claude Elwood Shannon (born 1916),
whose famous 1938 ML.L.T. master's thesis was entitled "A Symbolic Analysis of Relay and Switching
Circuits." (Ten years later, Shannon's article "The Mathematical Theory of Communication" was the
first publication that used the word bit to mean binary digit.)

Prior to 1938, people knew that when you wired two switches in series, both switches had to be
closed for current to flow, and when you wired two switches in parallel, one or the other had to be
closed. But nobody had shown with Shannon's clarity and rigor that electrical engineers could use all
the tools of Boolean algebra to design circuits with switches. In particular, if you can simplify a
Boolean expression that describes a network, you can simplify the network accordingly.

For example, the expression that indicates the characteristics you want in a cat looks like this:
MxNx(W+T)+(FxNx(1-W))+B

Using the associative law, we can reorder the variables that are combined with the AND (x) signs

and rewrite the expression this way:
(NXMx(W+T)+(NxFx(1-W))+B
In an attempt to clarify what I'm going to do here, I'll define two new symbols named X and Y:
X=Mx (W +T)
Y =Fx(1-W)
Now the expression for the cat you want can be written like this:
(NxX)+(NxY)+B
After we're finished, we can put the X and Y expressions back in.

Notice that the N variable appears twice in the expression. Using the distributive law, the expression
can be rewritten like this, with only one N:

(Nx(X+Y))+B
Now let's put the X and Y expressions back in:
(Nx((Mx(W+T)+(Fx(1-W))) +B

Due to the plethora of parentheses, this expression hardly looks simplified. But there's one less
variable in this expression, which means there's one less switch in the network. Here's the revised
version:

W

W‘,,/

H‘/:

\

I
] + |

Indeed, it's probably easier to see that this network is equivalent to the earlier one than to verify that
the expressions are the same.

Actually, there are still three too many switches in this network. In theory, you need only four
switches to define your perfect cat. Why four? Each switch is a bit. You should be able to get by with
one switch for the sex (off for male, on for female), another switch that's on for neutered, off for
unneutered, and two more switches for the color. There are four possible colors (white, black, tan,
and "other"), and we know that four choices can be defined with 2 bits, so all you need are two color
switches. For example, both switches can be off for white, one switch on for black, the other switch
on for tan, and both switches on for other colors.

Let's make a control panel right now for choosing a cat. The control panel is simply four switches
(much like the on/off switches you have on your walls for controlling your lights) and a lightbulb
mounted in a panel:

carhm _\‘; P

- '1‘ T / =1
: 45 : N = =
W ""‘f_l_\\‘*

= Cﬂnt 1‘01 P a nel

The switches are on (closed) when they're up, and off (open) when they're down. The two switches
for the cat's color are labeled somewhat obscurely, I'm afraid, but that's a drawback of reducing this
panel to the bare minimum: The left switch of the pair is labeled B; that means that the left switch on
by itself (as shown) indicates the color black. The right switch of the pair is labeled T; that switch on
by itself means the color tan. Both switches up means other colors; this choice is labeled O. Both
switches down means the color white, indicated by W, the letter at the bottom.

In computer terminology, the switches are an input device. Input is information that controls how a
circuit behaves. In this case, the input switches correspond to 4 bits of information that describe a cat.
The output device is the lightbulb. This bulb lights up if the switches describe a satisfactory cat. The
switches shown in the control panel on page 104 are set for a female unneutered black cat. This
satisfies your criteria, so the lightbulb is lit.

Now all we have to do is design a circuit that makes this control panel work.

You'll recall that Claude Shannon's thesis was entitled "A Symbolic Analysis of Relay and Switching
Circuits." The relays he was referring to were quite similar to the telegraph relays that we
encountered in Chapter 6. By the time of Shannon's paper, however, relays were being used for other
purposes and, in particular, in the vast network of the telephone system.

Like switches, relays can be connected in series and in parallel to perform simple tasks in logic.
These combinations of relays are called logic gates. When I say that these logic gates perform simple
tasks in logic, I mean as simple as possible. Relays have an advantage over switches in that relays
can be switched on and off by other relays rather than by fingers. This means that logic gates can be
combined to perform more complex tasks, such as simple functions in arithmetic. Indeed, the next
chapter will demonstrate how to wire switches, lightbulbs, a battery, and telegraph relays to make an
adding machine (albeit one that works solely with binary numbers).

As you recall, relays were crucial to the workings of the telegraph system. Over long distances, the
wires connecting telegraph stations had a very high resistance. Some method was needed to receive a
weak signal and send an identical strong signal. The relay did this by using an electromagnet to
control a switch. In effect, the relay amplified a weak signal to create a strong signal.

For our purposes, we're not interested in using the relay to amplify a weak signal. We're interested
only in the idea of a relay being a switch that can be controlled by electricity rather than by fingers.
We can wire a relay with a switch, a lightbulb, and a couple of batteries like this:

Notice that the switch at the left is open and the lightbulb is off. When you close the switch, the
battery at the left causes current to flow through the many turns of wire around the iron bar. The iron
bar becomes magnetic and pulls down a flexible metal contact that connects the circuit to turn on the

lightbulb:

When the electromagnet pulls the metal contact, the relay is said to be triggered. When the switch is
turned off, the iron bar stops being magnetic, and the metal contact returns to its normal position.

This seems like a rather indirect route to light the bulb, and indeed it is. If we were interested only in
lighting the bulb, we could dispense with the relay entirely. But we're not interested in lighting bulbs.
We have a much more ambitious goal.

We're going to be using relays a lot in this chapter (and then hardly at all after the logic gates have
been built), so I want to simplify the diagram. We can eliminate some of the wires by using a ground.
In this case, the grounds simply represent a common connection; they don't need to be connected to the
physical earth:

I know this doesn't look like a simplification, but we're not done yet. Notice that the negative
terminals of both batteries are connected to ground. So anywhere we see something like this:

let's replace it with the capital letter V (which stands for voltage), as we did in Chapters Chapter 5
and Chapter 6. Now our relay looks like this:

When the switch is closed, a current flows between V and ground through the coils of the
electromagnet. This causes the electromagnet to pull the flexible metal contact. That connects the
circuit between V, the lightbulb, and ground. The bulb lights up:

o

These diagrams of the relay show two voltage sources and two grounds, but in all the diagrams in this
chapter, all the V's can be connected to one another and all the grounds can be connected to one
another. All the networks of relays and logic gates in this chapter and the next will require only one
battery, although it might need to be a big battery. For example, the preceding diagram can be
redrawn with only one battery like this:

\‘*l”/
Pe N

r

But for what we need to do with relays, this diagram isn't very clear. It's better to avoid the circular
circuits and look at the relay—Iike the control panel earlier—in terms of inputs and outputs:

—1— “Output”
or “Out”

an

“Input
or “In”

If a current is flowing through the input (for example, if a switch connects the input to V), the

electromagnet is triggered and the output has a voltage.

The input of a relay need not be a switch, and the output of a relay need not be a lightbulb. The output
of one relay can be connected to the input of another relay, for example, like this:

When you turn the switch on, the first relay is triggered, which then provides a voltage to the second
relay. The second relay is triggered and the light goes on:

i VT
/ \

Connecting relays is the key to building logic gates.

Actually, the lightbulb can be connected to the relay in two ways. Notice the flexible metal piece
that's pulled by the electromagnet. At rest, it's touching one contact; when the electromagnet pulls it, it
hits another contact. We've been using that lower contact as the output of the relay, but we could just
as well use the upper contact. When we use this contact, the output of the relay is reversed and the
lightbulb is on when the input switch is open:

\"”/
Y ¥ 4 N\
‘[’ * 5 L 3

And when the input switch is closed, the bulb goes out:

i
I

Using the terminology of switches, this type of relay is called a double-throw relay. It has two outputs
that are electrically opposite—when one has a voltage, the other doesn't.

By the way, if you're having a tough time visualizing what modern relays look like, you can see a few
in conveniently transparent packaging at your local Radio Shack. Some, like the heavy-duty relays
with Radio Shack part numbers 275-206 and 275-214, are about the size of ice cubes. The insides are
encased in a clear plastic shell, so you can see the electromagnet and the metal contacts. The circuits
I'll be describing in this chapter and the next could be built using Radio Shack part number 275-240
relays, which are smaller (about the size of a Chiclet) and cheaper ($2.99 apiece).

Just as two switches can be connected in series, two relays can be connected in series:

The output of the top relay supplies a voltage to the second relay. As you can see, when both switches
are open, the lightbulb isn't lit. We can try closing the top switch:

V

S

Still the lightbulb doesn't light because the bottom switch is still open and that relay isn't triggered.
We can try opening the top switch and closing the bottom switch:

L

—t— -

il

ey — =

The lightbulb is still not lit. The current can't reach the lightbulb because the first relay isn't triggered.
The only way to get the bulb to light up is to close both switches:

. \"*’/

Now both relays are triggered, and current can flow between V, the lightbulb, and ground.

Like the two switches wired in series, these two relays are performing a little exercise in logic. The
bulb lights up only if both relays are triggered. These two relays wired in series are known as an
AND gate. To avoid excessive drawing, electrical engineers have a special symbol for an AND gate.

That symbol looks like this:
Inputs } Output

This is the first of four basic logic gates. The AND gate has two inputs (at the left in this diagram) and
one output (at the right). You'll often see the AND gate drawn as this one is with the inputs at the left
and the output at the right. That's because people who are accustomed to reading from left to right also
like to read electrical diagrams from left to right. But the AND gate can just as well be drawn with
the inputs at the top, the right, or the bottom.

The original circuit with the two relays wired in series with two switches and a lightbulb looked like
this:

Using the symbol for the AND gate, this same circuit looks like this:

< — <
B

Notice that this symbol for the AND gate not only takes the place of two relays wired in series, but it
also implies that the top relay is connected to a voltage, and both relays are connected to ground.
Again, the lightbulb lights up only if both the top switch and the bottom switch are closed. That's why
it's called an AND gate.

The inputs of the AND gate don't necessarily have to be connected to switches, and the output doesn't
necessarily have to be connected to a lightbulb. What we're really dealing with here are voltages at
the inputs and a voltage at the output. For example, the output of one AND gate can be an input to a
second AND gate, like this:

X A

Y
\

&

This bulb will light up only if all three switches are closed. Only if the top two switches are closed
will the output of the first AND gate trigger the first relay in the second AND gate. The bottom switch
triggers the second relay in the second AND gate.

If we think of the absence of a voltage as a 0, and the presence of a voltage as a 1, the output of the
AND gate is dependent on inputs like this:

O~
D -

=

]_
0

1 — 1 —

As with the two switches wired in series, the AND gate can also be described in this little table:

AND (0|1
0 00
1 01

It's also possible to make AND gates with more than two inputs. For example, suppose you connect
three relays in series:

L~

The lightbulb lights up only if all three switches are closed. This configuration is expressed by this

symbol:

The next logic gate involves two relays that are wired in parallel like this:

It's called a 3-input AND gate.

Notice that the outputs of the two relays are connected to each other. This connected output then
provides power for the lightbulb. Either one of the two relays is enough to light the bulb. For
example, if we close the top switch, the bulb lights up. The bulb is getting power from the left relay.

V
|

(L)

Similarly, if we leave the top switch open but close the bottom switch, the bulb lights up:

Ui

The bulb also lights if both switches are closed:

v
|

]

—
- —
- ——
B
e
e
r—n
=
- ——
i ——
e
- —
o e
e
S —— .
e —
e

L.

What we have here is a situation in which the bulb lights up if the top switch or the bottom switch is

closed. The key word here is or, so this is called the OR gate. Electrical engineers use a symbol for
the OR gate that looks like this:

[nputs j Qutput

It's somewhat similar to the symbol for the AND gate except that the input side is rounded, much like
the O in OR. (That might help you to keep them straight.)

The output of the OR gate supplies a voltage if either of the two inputs has a voltage. Again, if we say
that the absence of a voltage is 0 and the presence of a voltage is 1, the OR gate has four possible
states:

In the same way that we summarized the output of the AND gate, we can summarize the output of the
OR gate:

OR 0|1
0 |01
1 |11

OR gates can also have more than two inputs. (The output of such a gate is 1 if any of the inputs are 1;
the output is 0 only if all the outputs are 0.)

Earlier I explained how the relays that we're using are called double-throw relays because an output
can be connected two different ways. Normally, the bulb isn't lit when the switch is open:

When the switch is closed, the bulb lights up.

Alternatively, you can use the other contact so that the bulb is lit when the switch is open:

L RS
v / \

In this case, the lightbulb goes out when you close the switch. A single relay wired in this way is
called an inverter. An inverter isn't a logic gate (logic gates always have two or more inputs), but it's
often very useful nonetheless. It's represented by a special symbol that looks like this:

[nput —DO— Output

It's called an inverter because it inverts 0 (no voltage) to 1 (voltage) and vice versa:
—>o——1

1 —>07 0

With the inverter, the AND gate, and the OR gate, we can start wiring the control panel to automate a

choice of the ideal kitty. Let's begin with the switches. The first switch is closed for female and open
for male. Thus we can generate two signals that we'll call F and M, like this:

Y%
Lt)
._I [>o— M

When F is 1, M will be 0 and vice versa. Similarly, the second switch is closed for a neutered cat
and open for an unneutered cat:

V
l

So—U

The next two switches are more complicated. In various combinations, these switches must indicate
four different colors. Here are the two switches, both wired to a voltage:

L
L

When both switches are open (as shown), they indicate the color white. Here's how to use two
inverters and one AND gate to generate a signal I'll call W, which is a voltage (1) if you select a
white cat and not a voltage (0) if not:

ke 0

N
L/)f}n

When the switches are open, the inputs to both inverters are 0. The outputs of the inverters (which are
inputs to the AND gate) are thus both 1. That means the output of the AND gate is 1. If either of the
switches is closed, the output of the AND gate will be a 0.

To indicate a black cat, we close the first switch. This can be realized using one inverter and an AND
gate:

)

The output of the AND gate will be 1 only if the first switch is closed and the second switch is open.

Similarly, if the second switch is closed, we want a tan cat:
V

L %
T

Lt T

And if both switches are closed, we want a cat of an "other" color:

V
L3
L/.—JL} 7

Now let's combine all four little circuits into one big circuit. (As usual, the black dots indicate
connections between wires in the circuit; wires that cross without black dots are not connected.)

\{r”: TS0 }B

‘[./,:*DO] ft}T

| Do

Yes, I know this set of connections now looks very complicated. But if you trace through very
carefully—if you look at the two inputs to each AND gate to see where they're coming from and try to
ignore where they're also going—you'll see that the circuit works. If both switches are off, the W
output will be 1 and the rest will be 0. If the first switch is closed, the B output will be 1 and the rest
will be 0, and so forth.

Some simple rules govern how you can connect gates and inverters: The output of one gate (or
inverter) can be the input to one or more other gates (or inverters). But the outputs of two or more
gates (or inverters) are never connected to one another.

-

This circuit of four AND gates and two inverters is called a 2-Line-to-4-Line Decoder. The input is
two bits that in various combinations can represent four different values. The output is four signals,
only one of which is 1 at any time, depending on the two input values. On similar principles, you can
make a 3-Line-to-8-Line Decoder or a 4-Line-to-16-Line Decoder, and so forth.

The simplified version of the cat-selection expression was
Nx((Mx(W+T)+(Fx(1-W))) +B

For every + sign in this expression, there must be an OR gate in the circuit. For every x sign, there
must be an AND gate.

N

The symbols down the left side of the circuit diagram are in the same order as they appear in the
expression. These signals come from the switches wired with inverters and the 2-line-to-4-line
decoder. Notice the use of the inverter for the (1 — W) part of the expression.

Now you might say, "That's a heck of a lot of relays," and yes, that's true. There are two relays in
every AND gate and OR gate, and one relay for each inverter. I'd say the only realistic response is,

"Get used to it." We'll be using a lot more relays in the chapters ahead. Just be thankful you don't
actually have to buy them and wire them at home.
We'll look at two more logic gates in this chapter. Both use the output of the relay that normally has a

voltage present when the relay is untriggered. (This is the output used in the inverter.) For example, in
this configuration the output from one relay supplies power to a second relay. With both inputs off, the

lightbulb is on:

bz |

If the top switch is closed, the bulb goes off:

The light goes off because power is no longer being supplied to the second relay. Similarly, if the
bottom switch is closed, the light is also off:

-

it

And if both switches are closed, the lightbulb is off:

—<
a
L

This behavior is precisely the opposite of what happens with the OR gate. It's called NOT OR or,
more concisely, NOR. This is the symbol for the NOR gate:

-

It's the same as the symbol for the OR except with a little circle at the output. The circle means invert.

The NOR is the same as

The output of the NOR gate is shown in the following table:

NOR 0|1
0 110
1 00

This table shows results opposite those of the OR gate, which are 1 if either of the two inputs is 1 and
0 only if both inputs are 0.

And yet another way to wire two relays is shown here:

In this case, the two outputs are connected, which is similar to the OR configuration but using the
other contacts. The lightbulb is on when both switches are open.

The lightbulb remains on when the top switch is closed:

Similarly, the lightbulb remains on when the bottom switch is closed:

Only when both switches are closed does the lightbulb go off:

This behavior is exactly opposite that of the AND gate. This is called NOT AND or, more concisely,
NAND. The NAND gate is drawn just like the AND gate but with a circle at the output, meaning the
output is the inverse of the AND gate:

[nputs Output

The NAND gate has the following behavior:

NAND |01
0 11
1 10

Notice that the output of the NAND gate is opposite the AND gate. The output of the AND gate is 1
only if both inputs are 1; otherwise, the output is 0.

At this point, we've looked at four different ways of wiring relays that have two inputs and one
output. Each configuration behaves in a slightly different way. To avoid drawing and redrawing the
relays, we've called them logic gates and decided to use the same symbols to represent them that are
used by electrical engineers. The output of the particular logic gate depends on the input, which is
summarized here:

AND | 0 | 1 OR [0] 1
0 0|0 0 011

1 011 1 i
NAND | 0 | 1 NOR | O | 1
0 1 <1 0 110
1 110 1 0|0

So now we have four logic gates and the inverter. Completing this array of tools is just a regular old
relay:

This is called a buffer, and this is the symbol for it:

™~
™

It's the same symbol as the inverter but without the little circle. The buffer is remarkable for not doing
much. The output of the buffer is the same as the input:

0 > 0

1- [-1

But you can use a buffer when an input signal is weak. You'll recall that this was the reason relays
were used with the telegraph many years ago. Or a buffer can be used to slightly delay a signal. This
works because the relay requires a little time—some fraction of a second—to be triggered.

From here on in the book, you'll see very few drawings of relays. Instead, the circuits that follow will
be built from buffers, inverters, the four basic logic gates, and more sophisticated circuits (like the 2-
Line-to-4-Line Decoder) built from these logic gates. All these other components are made from
relays, of course, but we don't actually have to look at the relays.

Earlier, when building the 2-Line-to-4-Line Decoder, we saw a little circuit that looked like this:
Two inputs are inverted and become inputs to an AND gate. Sometimes a configuration like this is

drawn without the inverters:
—0
—a

Notice the little circles at the input to the AND gate. Those little circles mean that the signals are
inverted at that point—a 0 (no voltage) becomes a 1 (voltage) and vice versa.

An AND gate with two inverted inputs does exactly the same thing as a NOR gate:

17

The output is 1 only if both inputs are 0.

Similarly, an OR gate with the two inputs inverted is equivalent to a NAND gate:

o

The output is 0 only if both inputs are 1.

These two pairs of equivalent circuits represent an electrical implementation of De Morgan's Laws.
Augustus De Morgan was another Victorianera mathematician, nine years older than Boole, whose
book Formal Logic was published in 1847, the very same day (the story goes) as Boole's The
Mathematical Analysis of Logic. Indeed, Boole had been inspired to investigate logic by a very
public feud that was being waged between De Morgan and another British mathematician involving
accusations of plagiarism. (De Morgan has been exonerated by history.) Very early on, De Morgan
recognized the importance of Boole's insights. He unselfishly encouraged Boole and helped him along
the way, and is today sadly almost forgotten except for his famous laws.

De Morgan's Laws are most simply expressed this way:

AxB=A+B
A+B=AxB

A and B are two Boolean operands. In the first expression, they're inverted and then combined with
the Boolean AND operator. This is the same as combining the two operands with the Boolean OR
operator and then inverting the result (which is the NOR). In the second expression, the two operands
are inverted and then combined with the Boolean OR operator. This is the same as combining the
operands with the Boolean AND operator and then inverting (which is the NAND).

De Morgan's Laws are an important tool for simplifying Boolean expressions and hence, for
simplifying circuits. Historically, this was what Claude Shannon's paper really meant for electrical
engineers. But obsessively simplifying circuits won't be a major concern in this book. It's preferable
to get things working rather than to get things working as simply as possible. And what we're going to
get working next is nothing less than an adding machine.

Chapter 12. A Binary Adding Machine

Addition is the most basic of arithmetic operations, so if we want to build a computer (and that is my
hidden agenda in this book), we must first know how to build something that adds two numbers
together. When you come right down to it, addition is just about the only thing that computers do. If
we can build something that adds, we're well on our way to building something that uses addition to
also subtract, multiply, divide, calculate mortgage payments, guide rockets to Mars, play chess, and
foul up our phone bills.

The adding machine that we'll build in this chapter will be big, clunky, slow, and noisy, at least
compared to the calculators and computers of modern life. What's most interesting is that we're going
to build this adding machine entirely out of simple electrical devices that we've learned about in
previous chapters—switches, lightbulbs, wires, a battery, and relays that have been prewired into
various logic gates. This adding machine will contain nothing that wasn't invented at least 120 years
ago. And what's really nice is that we don't have to actually build anything in our living rooms;
instead, we can build this adding machine on paper and in our minds.

This adding machine will work entirely with binary numbers and will lack some modern amenities.
You won't be able to use a keyboard to indicate the numbers you want to add; instead you'll use a row

of switches. Rather than a numeric display to show the results, this adding machine will have a row
of lightbulbs.

But this machine will definitely add two numbers together, and it will do so in a way that's very much
like the way that computers add numbers.

Adding binary numbers is a lot like adding decimal numbers. When you want to add two decimal
numbers such as 245 and 673, you break the problem into simpler steps. Each step requires only that
you add a pair of decimal digits. In this example, you begin with 5 plus 3. The problem goes a lot
faster if you memorized an addition table sometime during your life.

The big difference between adding decimal and binary numbers is that you use a much simpler table
for binary numbers:

+/0/1
001

1/1/10
If you actually grew up with a community of whales and memorized this table in school, you might
have chanted aloud:

0 plus 0 equals 0.
0 plus 1 equals 1.
1 plus 0 equals 1.
1 plus 1 equals 0, carry the 1.

You can rewrite the addition table with leading zeros so that each result is a 2-bit value:

+/0 1

0/00(01

10110

Viewed like this, the result of adding a pair of binary numbers is 2 bits, which are called the sum bit
and the carry bit (as in "1 plus 1 equals 0, carry the 1"). Now we can divide the binary addition table
into two tables, the first one for the sum bit:

+sum |01

0 01

1 10
and the second one for the carry bit:

+carry 0|1

0 0/0

1 01

It's convenient to look at binary addition in this way because our adding machine will do sums and
carries separately. Building a binary adding machine requires that we design a circuit that performs
these operations. Working solely in binary simplifies the problem immensely because all the parts of
a circuit—switches, lightbulbs, and wires—can be binary digits.

As in decimal addition, we add two binary numbers column by column beginning with the rightmost
column:

01100101
+ 10110110
100011011

Notice that when we add the third column from the right, a 1 is carried over to the next column. This
happens again in the sixth, seventh, and eighth columns from the right.

What size binary numbers do we want to add? Since we're building our adding machine only in our
minds, we could build one to add very long numbers. But let's be reasonable and decide to add binary
numbers up to 8 bits long. That is, we want to add binary numbers that can range from 0000-0000
through 1111-1111, or decimal 0 through 255. The sum of two 8-bit numbers can be as high as 1-
1111-1110, or 510.

The control panel for our binary adding machine can look like this:

PP PPeRee

We have on this panel two rows of eight switches. This collection of switches is the input device, and
we'll use it to "key in" the two 8-bit numbers. In this input device, a switch is off (down) for 0 and on
(up) for 1, just like the wall switches in your home. The output device at the bottom of the panel is a
row of nine lightbulbs. These bulbs will indicate the answer. An unlit bulb is a 0 and a lit bulb is a 1.
We need nine bulbs because the sum of the two 8-bit numbers can be a 9-bit number.

The rest of the adding machine will consist of logic gates wired together in various ways. The
switches will trigger the relays in the logic gates, which will then turn on the correct lights. For
example, if we want to add 0110-0101 and 1011-0110 (the two numbers shown in the preceding
example), we throw the approprlate sw1tches as shown on the followmg page.

;:f l @ l 8 ' 8 f.!;. : T

The bulbs light up to indicate the answer of 1-0001-1011. (Well, let's hope so, anyway. We haven't
built it yet!)

I mentioned in the last chapter that I'll be using lots of relays in this book. The 8-bit adding machine
we're building in this chapter requires no fewer than 144 relays—18 for each of the 8 pairs of bits
we're adding together. If I showed you the completed circuit in its entirety, you'd definitely freak.
There's no way that anyone could make sense of 144 relays wired together in strange ways. Instead,
we're going to approach this problem in stages using logic gates.

Maybe you saw right away a connection between logic gates and binary addition when you looked at
the table of the carry bit that results from adding two 1-bit numbers together:

+carry | 0|1
0 00
1 01

You might have realized that this was identical to the output of the AND gate shown in the last

chapter:

AND 0|1
0 00
1 01

So the AND gate calculates a carry bit for the addition of two binary digits.

Aha! We're definitely making progress. Our next step seems to be to persuade some relays to behave
like this:

+sum 01
0 01
1 110

This is the other half of the problem in adding a pair of binary digits. The sum bit turns out to be not
quite as straightforward as the carry bit, but we'll get there.

The first thing to realize is that the OR gate is close to what we want except for the case in the lower
right corner:

OR 0|1
0 01
1 |11

The NAND gate is also close to what we want except for the case in the upper left corner:

NAND 0|1
0 11
1 10

So let's connect both an OR gate and a NAND gate to the same inputs:
Aln

T D7 OR Out
B In ' L
} NAND Out

The following table summarizes the outputs of these OR and NAND gates and compares that to what
we want for the adding machine:

AlIn B In|OR Out NAND Out | What we want

0 0 0 1 0

Notice that what we want is 1 only if the output from the OR gate and the NAND gate are both 1. This
suggests that these two outputs can be an input to an AND gate:

Aln
B In * :J : l
And that's it.

Notice that there are still only two inputs and one output to this entire circuit. The two inputs go into
both the OR gate and the NAND gate. The outputs from the OR and NAND gates go into the AND
gate, and that gives us exactly what we want:

Aln | B In|OR Out NAND Out | AND Out

0 0 0 1 0
0 1 1 1 1
1 0 1 1 1
1 1 1 0 0

There's actually a name for what this circuit does. It's called the Exclusive OR gate or, more briefly,
the XOR gate. It's called the Exclusive OR gate because the output is 1 if the A input is 1 or the B
input is 1, but not both. So, instead of drawing an OR gate, NAND gate, and AND gate, we can use
the symbol that electrical engineers use for the XOR gate:

Input@(}utput

It looks very much like the OR gate except that it has another curved line at the input side. The
behavior of the XOR gate is shown here:

XOR |01
0 01
1 110

The XOR gate is the final logic gate I describe in detail in this book. (A sixth gate sometimes shows
up in electrical engineering, It's called the coincidence or equivalence gate because the output is 1
only if the two inputs are the same. The coincidence gate describes an output opposite that of the

XOR gate, so this gate's symbol is the same as the XOR gate but with a little circle at the output end.)

Let's review what we know so far. Adding two binary numbers produces a sum bit and a carry bit:

+sum | 0 [1 +carry | 0 | 1
0 0|1 0 0|0
1 1 0 1 01
You can use the following two logic gates to get these results:
XOR | 0|1 AND | 0 [1
0 011 0 0|0
1 110 1 011

The sum of two binary numbers is given by the output of an XOR gate, and the carry bit is given by
the output of an AND gate. So we can combine an AND gate and an XOR gate to add two binary

digits called A and B:
Aln \
J) Sum Out
B In - 7,
L—
Carry Out

And instead of drawing and redrawing an AND gate and an XOR gate, you can simply draw a box
like this:

Aln Sum Out

5

Half

B In Adder

COp—~Carry Out

This box is labeled Half Adder for a reason. Certainly it adds two binary digits and gives you a sum
bit and a carry bit. But the vast majority of binary numbers are longer than 1 bit. What the Half Adder
fails to do is add a possible carry bit from a previous addition. For example, suppose we're adding
two binary numbers like these:
1111
+ 1111
11110

We can use the Half Adder only for the addition of the rightmost column: 1 plus 1 equals 0, carry the
1. For the second column from the right, we really need to add three binary numbers because of the
carry. And that goes for all subsequent columns. Each subsequent addition of two binary numbers can

include a carry bit from the previous column.

To add three binary numbers, we need two Half Adders and an OR gate, wired this way:

Carry In A 5 S5um Out
E Halt

Aln—J|A - g Adder .
JI_IIEIH) Carry Out
Bln—ip. =" gp

To understand this, begin with the A and B inputs to the first Half Adder at the left. The output is a
sum and a carry. That sum must be added to the carry from the previous column, so they're inputs to
the second Half Adder. The sum from the second Half Adder is the final sum. The two Carry Outs
from the Half Adders are inputs to an OR gate. You might think another Half Adder is called for here,
and that would certainly work. But if you go through all the possibilities, you'll find that the Carry
Outs from the two Half Adders are never both equal to 1. The OR gate is sufficient for adding them
because the OR gate is the same as the XOR gate if the inputs are never both 1.

Instead of drawing and redrawing that diagram, we can just call it a Full Adder:

Carry In—CI
- Sum Qut
Aln—ja
Adder CO |—Carry Out
B In B

The following table summarizes all the possible combinations of inputs to the Full Adder and the
resultant outputs:

Aln|B In|CarryIn Sum Out Carry Out

0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

I said early on in this chapter that we would need 144 relays for our adding machine. Here's how I
figured that out: Each AND, OR, and NAND gate requires 2 relays. So an XOR gate comprises 6
relays. A Half Adder is an XOR gate and an AND gate, so a Half Adder requires 8 relays. Each Full
Adder is two Half Adders and an OR gate, or 18 relays. We need 8 Full Adders for our 8-bit adding
machine. That's 144 relays.

Recall our original control panel with the switches and lightbulbs:

D 90989
R @ ? t

CerPeeeE

We can now start wiring the switches and lightbulbs to the Full Adder.

First connect the two rightmost switches and the rightmost lightbulb to a Full Adder:

Lo |,

L1

fCI
—

Full

Adder

cO

Carry Out

When you begin adding two binary numbers, the first column of digits that you add is different. It's
different because every subsequent column might include a carry bit from the previous column. The
first column doesn't include a carry bit, which is why the carry input to the Full Adder is connected to
ground. That means a 0 bit. The addition of the first pair of binary digits could, of course, result in a

carry bit. That carry output is an input to the next column.

For the next two digits and the next lightbulb, you use a Full Adder wired this way:

Carry In

.

CI

< L —<

e

B

Full
Adder

CO

Carry Out

The carry output from the first Full Adder is an input to this second Full Adder. Each subsequent

column of digits is wired the same way. Each carry output from one column is a carry input to the next
column.

Finally the eighth and last pair of switches are wired to the last Full Adder:

Carry In CI S
‘H[=
» Full
1 Addes
Vv CcO /
L/‘_ B =

Here the final carry output goes to the ninth lightbulb.
We're done.

Here's another way to look at this assemblage of eight Full Adders, with each Carry Out serving as
input to the next Carry In:

o e ey e |G
|
ABCI| | |[ABCI| | [ABCI| | [ABCI| | |ABC ABCI
FA FA s, FA FA FA
CoO S CO S CO S CO S CO S COS
\ J

Carry Out 8-Bit Sum

Here's the complete 8-Bit Adder drawn as one box. The inputs are labeled A, through A~ and B,
through B-. The outputs are labeled S, through S (for sum):

i Iiput B I_Tur Carry In
i b B \ '
NENENEENENENEEN.

T Bl
CO 8-Bit Adder ClI

S
ERERERE
Carry Out SumEutput

This is a common way to label the separate bits of a multibit number. The bits Ay, By, and S are the

least-significant, or rightmost, bits. The bits A-, B, and S, are the most-significant, or leftmost, bits.
For example, here's how these subscripted letters would apply to the binary number 0110-1001:

A, A, A, AL A A A A

o 1 1 0 1 0 0 1

The subscripts start at 0 and get higher for more significant digits because they correspond to the
exponents of powers of two:

2r 2 ;2 F A R
o 1 1 0 1 0 0 1

If you multiply each power of two by the digit below it and add, you'll get the decimal equivalent of
0110-1001, whichis 64 + 32 +8 + 1, or 105.

Another way an 8-Bit Adder might be drawn is like this:
A Input B Input

U U Carry In
8 8

A Ay B, By

CO 8-Bit Adder CI
b"c’-:il

b
Carry Out U

The double-line arrows have an 8 inside to indicate that each represents a group of eight separate
signals. They are labeled A-...A,, B,...By, and S-...S, also to indicate 8-bit numbers.

Once you build one 8-Bit Adder, you can build another. It then becomes easy to cascade them to add
two 16-bit numbers:

A Input B Input A Input B Input
(high 8 bits) (high 8 bits) (low 8 hlts} (low 8§ I'“I'lt‘:
I5"‘1 5. B1 g, Bt\ 'l:;.]ﬂ ¥ .I'all?___ ﬁil] BB[] _[{_.:Eil'f}"
In
CO:$:Bi¢ Adder © 20k leorgmiAddes 1@
Carry :
S$15..5¢ In 5250
4 4
Carry Out -
\]

16-15; Sum

The Carry Out of the adder on the right is connected to the Carry In of the adder on the left. The adder
on the left has as input the most-significant eight digits of the two numbers to be added and creates as
output the most-significant eight digits of the result.

And now you might ask, "Is this really the way that computers add numbers together?"

Basically, yes. But not exactly.

First, adders can be made faster than this one. If you look at how this circuit works, a carry output
from the least-significant pair of numbers is required for the next pair to be added, and a carry output
from the second pair is required for the third pair to be added, and so forth. The total speed of the
adder is equal to the number of bits times the speed of the Full Adder component. This is called a
ripple carry. Faster adders use additional circuitry called a look-ahead carry that speeds up this
process.

Second (and most important), computers don't use relays any more! They did at one time, however.
The first digital computers built beginning in the 1930s used relays and later vacuum tubes. Today's
computers use transistors. When used in computers, transistors basically function the same way relays
do, but (as we'll see) they're much faster and much smaller and much quieter and use much less power
and are much cheaper. Building an 8-Bit Adder still requires 144 transistors (more if you replace the
ripple carry with a look-ahead carry), but the circuit is microscopic.

Chapter 13. But What About Subtraction?

After you've convinced yourself that relays can indeed be wired together to add binary numbers, you
might ask, "But what about subtraction?" Rest assured that you're not making a nuisance of yourself by
asking questions like this; you're actually being quite perceptive. Addition and subtraction
complement each other in some ways, but the mechanics of the two operations are different. An
addition marches consistently from the rightmost column of digits to the leftmost column. Each carry
from one column is added to the next column. We don't carry in subtraction, however; we borrow,
and that involves an intrinsically different mechanism—a messy back-and-forth kind of thing.

For example, let's look at a typical borrow-laden subtraction problem:

293

176
Lild

To do this, we start with the rightmost column. First we see that 6 is bigger than 3, so we have to
borrow 1 from the 5, and then subtract 6 from 13, which is 7. Then we have to remember that we
borrowed 1 from the 5, so it's really a 4, and this 4 is smaller than 7, so we borrow 1 from the 2 and
subtract 7 from 14, which is 7. Then we have to remember that we borrowed 1 from the 2, so it's
really a 1, and then we subtract 1 from it to get 0. Our answer is 77:
253
- 176

77

Now how are we ever going to persuade a bunch of logic gates to go through such perverse logic?

Well, we're not going to try. Instead, we're going to use a little trick that lets us subtract without
borrowing. This will please Polonius ("Neither a borrower nor a lender be") and the rest of us as
well. Moreover, examining subtraction in detail is useful because it directly relates to the way in
which binary codes are used for storing negative numbers in computers.

For this explanation, I need to refer to the two numbers being subtracted. Their proper names are the
minuend and the subtrahend. The subtrahend is subtracted from the minuend, and the result is the
difference:
Minuend
— Subtrahend
Difference

To subtract without borrowing, you first subtract the subtrahend not from the minuend but from 999:

999
- 176
823

You use 999 here because the numbers have 3 digits. If the numbers had 4 digits, you would use 9999.
Subtracting a number from a string of 9s results in a number called the nines' complement. The nines'

complement of 176 is 823. And it works in reverse: The nines' complement of 823 is 176. What's
nice is this: No matter what the subtrahend is, calculating the nines' complement never requires a
borrow.

After you've calculated the nines' complement of the subtrahend, you add it to the original minuend:
253

+ 823
1076

And finally you add 1 and subtract 1000:

1076

+ 1

- 1000
P

You're finished. The result is the same as before, and never once did you borrow.
Why does this work? The original subtraction problem is

253 - 176

If any number is both added to and subtracted from this expression, the result will be the same. So
let's add 1000 and subtract 1000:

253 — 176 + 1000 — 1000

This expression is equivalent to

253 - 176 + 999 + 1 — 1000

Now the various numbers can be regrouped, this way:

253 + (999 — 176) + 1 — 1000

And this is identical to the calculation I demonstrated using the nines' complement. We replaced the
one subtraction with two subtractions and two additions, but in the process we got rid of all the nasty
borrows.

What if the subtrahend is larger than the minuend? For example, the subtraction problem could be

176

- 253
e

Normally, you would look at this and say, "Hmmm. I see that the subtrahend is larger than the
minuend, so I have to switch the two numbers around, perform the subtraction, and remember that the
result is really a negative number." You might be able to switch them around in your head and write
the answer this way:

176
— 253

i 4

Doing this calculation without borrowing is a little different from the earlier example. You begin as
you did before by subtracting the subtrahend (253) from 999 to get the nines' complement:
999
—: 253

—

746

Now add the nines' complement to the original minuend:

176
+ 746
922

At this point in the earlier problem, you were able to add 1 and subtract 1000 to get the final result.
But in this case, that strategy isn't going to work well. You would need to subtract 1000 from 923, and
that really means subtracting 923 from 1000, and that requires borrowing.

Instead, since we effectively added 999 earlier, let's subtract 999 now:

922

= 05
777

When we see this, we realize that our answer will be a negative number and that we really need to
switch around the two numbers by subtracting 922 from 999. This again involves no borrowing, and
the answer is as we expect:
922
- 999

- 77

This same technique can also be used with binary numbers and is actually simpler than with decimal
numbers. Let's see how it works.

The original subtraction problem was

253

- 176
277

When these numbers are converted to binary, the problem becomes

11111101
— 10110000

Step 1. Subtract the subtrahend from 11111111 (which equals 255):
11111111
10110000
01001111

When we were working with decimal numbers, the subtrahend was subtracted from a string of nines,
and the result was called the nines' complement. With binary numbers, the subtrahend is subtracted
from a string of ones and the result is called the ones’ complement. But notice that we don't really
have to do a subtraction to calculate the ones' complement. That's because every 0 bit in the original
number becomes a 1 bit in the ones' complement, and every 1 bit becomes a 0 bit. For this reason, the
ones' complement is also sometimes called the negation, or the inverse. (At this point, you might
recall from Chapter 11 that we built something called an inverter that changedaOtoa landa 1toa
0.)

Step 2. Add the ones' complement of the subtrahend to the minuend:
4100

+ 01001111
101001100

Step 3. Add 1 to the result:

101001100
+ 1
101001101

Step 4. Subtract 100000000 (which equals 256):

101001101
— 100000000
1001101

The result is equivalent to 77 in decimal.

Let's try it again with the two numbers reversed. In decimal, the subtraction problem is

176

- 253
777

and in binary it looks like this:

10110000
=03 0

Step 1. Subtract the subtrahend from 11111111. You get the ones' complement:

166 s i e
171111101
00000010

Step 2. Add the ones' complement of the subtrahend to the minuend:

10110000
+ 00000010
10110010

Now 11111111 must be subtracted from the result in some way. When the original subtrahend is
smaller than the minuend, you accomplish this task by adding 1 and subtracting 100000000. But you
can't subtract this way without borrowing. So instead, we subtract this result from 11111111:

1111111
- 10110010
01001101

Again, this strategy really means that we're just inverting all the bits to get the result. The answer
again is 77, but really —77.

At this point, we have all the knowledge we need to modify the adding machine developed in the last
chapter so that it can perform subtraction as well as addition. So that this doesn't become too
complex, this new adding and subtracting machine will perform subtractions only when the
subtrahend is less than the minuend, that is, when the result is a positive number.

The core of the adding machine was an 8-Bit Adder assembled from logic gates:

A [ipur B Irlput Carry In
R

Ar...Ap B-...B,
CO 8-Bit Adder CI

oV

Carry Out Sum Output

As you probably recall, the inputs AQ through A7 and BO through B7 were connected to switches that
indicated two 8-bit values to be added. The Carry In input was connected to ground. The SO through
S7 outputs were connected to eight lightbulbs that displayed the result of the addition. Because the
addition could result in a 9-bit value, the Carry Out output was also connected to a ninth lightbulb.

The control panel looked like this:

In this diagram, the switches are set to add 183 (or 10110111) and 22 (00010110), producing the
result of 205, or 11001101 as shown in the row of lightbulbs.

The new control panel for adding and subtracting two 8-bit numbers is just slightly modified. It
includes an extra switch to indicate whether we want to add or subtract.

.. | @é .8)_1 &L {!J

vty o *ﬁL"/
ﬁ“&:@h TenNE 3

..I'i:-'{'/f ‘\ H__,,_,-’ "/.F \/;I‘_..

_'Dw rIFJL::mar
3‘ ”!Zidl:. rﬂn'.x

You turn this switch off for addition and on for subtraction, as labeled. Also, only the rightmost eight
lightbulbs are used to display results. The ninth lightbulb is now labeled "Overflow/Underflow." This
lightbulb indicates that a number is being calculated that can't be represented by the eight lightbulbs.
This will happen if an addition produces a number greater than 255 (that's called an overflow) or if a
subtraction produces a negative number (an underflow). A subtraction will produce a negative
number if the subtrahend is larger than the minuend.

The major addition to the adding machine is some circuitry that calculates a ones' complement of an
8-bit number. Recall that the ones' complement is equivalent to inverting bits, so something to
calculate the ones' complement of an 8-bit number might look as simple as eight inverters:

Inputs

WYY NN

Qutputs

The problem with this circuit is that it always inverts the bits that enter into it. We're trying to create a
machine that does both addition and subtraction, so the circuitry needs to invert the bits only if a
subtraction is being performed. A better circuit looks like this:

Invert ‘
o o 5 Y

A single signal labeled Invert is input to each of eight XOR (exclusive OR) gates. Recall that the
XOR exhibits the following behavior:

Inputs

&

Qutputs

XOR |01
0 01
1 110

So if the Invert signal is 0, the eight outputs of the XOR gates are the same as the eight inputs. For
example, if 01100001 is input, then 01100001 is output. If the Invert signal is 1, the eight input signals
are inverted. If 01100001 is input, 10011110 is output.

Let's package these eight XOR gates in a box labeled Ones" Complement:

S N T N N N

In0 Ing Ing Ing In; In, In; Ing

— [nvert
Ones” Complement

Out; Outgy Outs Outy Outy Out; Outy; Outy

\J A Y A A A\ A\ Y

The Ones' Complement box, the 8-Bit Adder box, and a final exclusive OR gate can now be wired
together like this:

A Input B Input

N e
r

\

EERNRRE.
SUB)—»{ Invert

Ones’ Complement

PY VY Y ey

Ao A BB

—co 8-Bit Adder CI

§7.0.9

FALEL |.|

Yy ¥y Y ¥Y ¥y vy vy Y
Overflow/ L J

Underflow

T

Sum Output

Notice the three signals all labeled SUB. This is the Add/Subtract switch. This signal is 0 if an
addition is to be performed and 1 if a subtraction is to be performed. For a subtraction, the B inputs
(the second row of switches) are all inverted by the Ones' Complement circuit before entering the
adder. Also for a subtraction, you add 1 to the result of the addition by setting the CI (Carry In) input
of the adder to 1. For an addition, the Ones' Complement circuit has no effect and the CI input is O.

The SUB signal and the CO (Carry Out) output of the adder also go into an XOR gate that's used to
light up the Overflow/Underflow lamp. If the SUB signal is 0 (which means an addition is being
performed), the lightbulb will be lit if the CO output of the adder is 1. This means that the result of the
addition is greater than 255.

If a subtraction is being performed and if the subtrahend (the B switches) is less than the minuend (the
A switches), it's normal that the CO output from the adder is 1. This represents the 100000000 that
must be subtracted in the final step. So the Overflow/Underflow lamp is lit only if the CO output from
the adder is 0. This means that the subtrahend is greater than the minuend and the result is negative.
The machine shown above isn't designed to display negative numbers.

You must surely be glad you asked, "But what about subtraction?"

I've been talking about negative numbers in this chapter, but I haven't yet indicated what negative
binary numbers look like. You might assume that the traditional negative sign is used with binary just
as it is in decimal. For example, —77 is written in binary as —1001101. You can certainly do that, but

one of the goals in using binary numbers is to represent everything using Os and 1s—even tiny
symbols such as the negative sign.

Of course, you could simply use another bit for the negative sign. You could make that extra bit 1 for
a negative number and O for a positive number, which would work, although it doesn't go quite far
enough. There's another solution for representing negative numbers that also provides a hassle-free
method for adding negative and positive numbers together. The drawback of this other method is that
you must decide ahead of time how many digits are required for all the numbers you might encounter.

Let's think about this for a moment. The advantage of writing positive and negative numbers the way
we normally do is that they can go on forever. We imagine 0 as the middle of an infinite stream of
positive numbers going off in one direction and an infinite stream of negative numbers going off in
another:

...—1,000,000 999,999 ... -3-2-1012 3 ... 999,999 1,000,000 ...

But suppose we don't need an infinite number of numbers. Suppose we know at the outset that every
number we come across will be within a particular range.

Let's look at a checking account, which is one place people sometimes see negative numbers. Let's
assume that we never have as much as $500 in our checking account and that the bank has given us a
no-bounce checking limit of $500. This means that the balance in our checking account is always a
number somewhere between $499 and —$500. Let's also assume that we never deposit as much as
$500, we never write a check for more than $500, and we deal only in dollars and don't care about
cents.

This set of conditions means that the range of numbers we deal with in using our checking account
include -500 through 499. That's a total of 1000 numbers. This restriction implies that we can use just
three decimal digits and no negative sign to represent all the numbers we need. The trick is that we
really don't need positive numbers ranging from 500 through 999. That's because we've already
established that the maximum positive number we need is 499. So the three-digit numbers from 500
through 999 can actually represent negative numbers. Here's how it works:

To mean —500, we use 500.
To mean —499, we use 501.
To mean —498, we use 502.
(yada, yada, yada)

To mean -2, we use 998.
To mean —1, we use 999.
To mean 0, we use 000.

To mean 1, we use 001.

To mean 2, we use 002.
(yada, yada, yada)

To mean 497, we use 497.
To mean 498, we use 498.

To mean 499, we use 499.

In other words, every 3-digit number that begins with a 5, 6, 7, 8, or 9 is actually a negative number.
Instead of writing the numbers like this:

—500-499-498 ... 4-3-2-101234... 497 498 499

we write them this way:

500 501 502 ... 996 997 998 999 000 001 002 003 004 ... 497 498 499

Notice that this forms a circle of sorts. The lowest negative number (500) looks as if it continues from
the highest positive number (499). And the number 999 (which is actually —1) is one less than zero. If
we add 1 to 999, we'd normally get 1000. But since we're only dealing with three digits, it's actually
000.

This type of notation is called ten's complement. To convert a 3-digit negative number to ten's
complement, we subtract it from 999 and add 1. In other words, the ten's complement is the nines'
complement plus one. For example, to write —255 in ten's complement, subtract it from 999 to get 744
and then add 1 to get 745.

You've probably heard it said that "Subtraction is merely addition using negative numbers." To which
you've probably replied, "Yeah, but you still have to subtract them." Well, using the ten's
complement, you don't subtract numbers at all. Everything is addition.

Suppose you have a checking account balance of $143. You write a check for $78. That means you
have to add a negative $78 to $143. In ten's complement, —78 is written as 999 —078 + 1, or 922. So,
our new balance is $143 + $922, which equals (ignoring the overflow), $65. If we then write a check
for $150 dollars, we have to add —150, which in ten's complement equals 850. So our previous
balance of 065 plus 850 equals 915, our new balance. This is actually equivalent to —$85.

The equivalent system in binary is called two's complement. Let's assume that we're working with 8-
bit numbers. These range from 00000000 to 11111111, which normally correspond to decimal
numbers 0 through 255. But if you also want to express negative numbers, every 8-bit number that
begins with a 1 will actually represent a negative number, as shown in the following table:

Binary Decimal
10000000 |—128
10000001 |-127
10000010 |-126

10000011 |-125

11111101 -3
11111110 | -2
11111111 | -1
00000000 | 0
00000001 | 1

00000010 | 2

01111100 124
01111101125

01111110 126

01111111127

The range of numbers that you can represent is now limited to —128 through +127. The most
significant (leftmost) bit is known as the sign bit. The sign bit is 1 for negative numbers and 0 for
positive numbers.

To calculate the two's complement, first calculate the ones' complement and then add 1. This is
equivalent to inverting all the digits and adding 1. For example, the decimal number 125 is 01111101.
To express —125 in two's complement, first invert the digits of 01111101 to get 10000010, and then
add 1 to get 10000011. You can verify the result using the preceding table. To go backward, do the
same thing—invert all the bits and add 1.

This system gives us a way to express positive and negative numbers without using negative signs. It
also lets us freely add positive and negative numbers using only the rules of addition. For example,
let's add the binary equivalents of —127 and 124. Using the preceding table as a cheat sheet, this is
simply
10000001
+ 01111100
T 1010

The result is equivalent to —3 in decimal.

What you need to watch out for here is overflow and underflow conditions. That's when the result of
an addition is greater than 127 or less than —128. For example, suppose you add 125 to itself:
01111101
+01111101
11111010

Because the high bit is set to 1, the result must be interpreted as a negative number, specifically the
binary equivalent of —6. Something similar happens when —125 is added to itself:

10000011
+ 10000011
100000110

We decided at the outset that we're restricting ourselves to 8-bit numbers, so the leftmost digit of the
result must be ignored. The rightmost 8 bits are equivalent to +6.

In general, the result of an addition involving positive and negative numbers is invalid if the sign bits
of the two operands are the same but the sign bit of the result is different.

Now we have two different ways of using binary numbers. Binary numbers can be either signed or
unsigned. Unsigned 8-bit numbers range from 0 through 255. Signed 8-bit numbers range from —128
through 127. Nothing about the numbers themselves will tell you whether they're signed or unsigned.

For example, suppose someone says, "I have an 8-bit binary number and the value is 10110110.
What's the decimal equivalent?" You must first inquire, "Is that a signed or an unsigned number? It
could be —74 or 182."

That's the trouble with bits: They're just zeros and ones and don't tell you anything about themselves.

Chapter 14. Feedback and Flip-Flops

Everybody knows that electricity makes things move. A brief glance around the average home reveals
electric motors in appliances as diverse as clocks, fans, food processors, and compact disc players.
Electricity also makes the cones in loudspeakers vibrate, bringing forth sounds, speech, and music
from the stereo system and the television set. But perhaps the simplest and most elegant way that
electricity makes things move is illustrated by a class of devices that are quickly disappearing as
electronic counterparts replace them. I refer to the marvelously retro electric buzzers and bells.

Consider a relay wired this way with a switch and battery:

L/F N

1_—-——-"""
——

o —

If this looks a little odd to you, you're not imagining things. We haven't seen a relay wired quite like
this yet. Usually a relay is wired so that the input is separate from the output. Here it's all one big
circle. If you close the switch, a circuit is completed:

[—4 .
L -
g
: =
3

~

A

N i + [} o

The completed circuit causes the electromagnet to pull down the flexible contact:

1-]—”l

But when the contact changes position, the circuit is no longer complete, so the electromagnet loses
its magnetism and the flexible contact flips back up:

. T

—i L

o
£l
<

e

which, of course, completes the circuit again. What happens is this: As long as the switch is closed,
the metal contact goes back and forth—alternately closing the circuit and opening it—most likely
making a sound. If the contact makes a rasping sound, it's a buzzer. If you attach a hammer to it and
provide a metal gong, you'll have the makings of an electric bell.

You can choose from a couple of ways to wire this relay to make a buzzer. Here's another way to do
it using the conventional voltage and ground symbols:

V

\, v

You might recognize in this diagram the inverter from Chapter 11. The circuit can be drawn more

simply this way:

[—/-—[}OT Qutput

As you'll recall, the output of an inverter is 1 if the input is 0, and O if the input is 1. Closing the
switch on this circuit causes the relay in the inverter to alternately open and close. You can also wire
the inverter without a switch to go continuously:

[>o — Output
(J

This drawing might seem to be illustrating a logical contradiction because the output of an inverter is
supposed to be opposite the input, but here the output is the input! Keep in mind, however, that the
inverter is actually just a relay, and the relay requires a little bit of time to change from one state to
another. So even if the input is the same as the output, the output will soon change, becoming the
inverse of the input (which, of course, changes the input, and so forth and so on).

What is the output of this circuit? Well, the output quickly alternates between providing a voltage and
not providing a voltage. Or, we can say, the output quickly alternates between 0 and 1.

This circuit is called an oscillator. It's intrinsically different from everything else we've looked at so
far. All the previous circuits have changed their state only with the intervention of a human being who
closes or opens a switch. The oscillator, however, doesn't require a human being; it basically runs by
itself.

Of course, the oscillator in isolation doesn't seem to be very useful. We'll see later in this chapter and
in the next few chapters that such a circuit connected to other circuits is an essential part of
automation. All computers have some kind of oscillator that makes everything else move in
synchronicity.

The output of the oscillator alternates between 0 and 1. A common way to symbolize that fact is with
a diagram that looks like this:

This is understood to be a type of graph. The horizontal axis represents time, and the vertical axis
indicates whether the output is 0 or 1:

| !

Time

All this is really saying that as time passes, the output of the oscillator alternates between 0 and 1 on
a regular basis. For that reason, an oscillator is sometimes often referred to as a clock because by
counting the number of oscillations you can tell time (kind of).

How fast will the oscillator run? That is, how quickly will the metal contact of the relay vibrate back
and forth? How many times a second? That obviously depends on how the relay is built. One can
easily imagine a big, sturdy relay that clunks back and forth slowly and a small, light relay that buzzes
rapidly.

A cycle of an oscillator is defined as the interval during which the output of the oscillator changes
and then comes back again to where it started:
One

cycle

! 1 =

I

I
I'ime

The time required for one cycle is called the period of the oscillator. Let's assume that we're looking
at a particular oscillator that has a period of 0.05 second. We can then label the horizontal axis in
seconds beginning from some arbitrary time we denote as 0:

One
cycle
.1 L
(0
! ! } ! } } } -
0 0.025 0,05 0.075 0,10 0.125 0,15 Time

The frequency of the oscillator is 1 divided by the period. In this example, if the period of the
oscillator is 0.05 second, the frequency of the oscillator is 1 + 0.05, or 20 cycles per second. Twenty
times per second, the output of the oscillator changes and changes back.

Cycles per second is a fairly self-explanatory term, much like miles per hour or pounds per square
inch or calories per serving. But cycles per second isn't used much any more. In commemoration of
Heinrich Rudolph Hertz (1857-1894), who was the first person to transmit and receive radio waves,
the word hertz is now used instead. This usage started first in Germany in the 1920s and then
expanded into other countries over the decades.

Thus, we can say that our oscillator has a frequency of 20 hertz, or (to abbreviate) 20 Hz.

Of course, we just guessed at the actual speed of one particular oscillator. By the end of this chapter,
we'll be able to build something that lets us actually measure the speed of an oscillator.

To begin this endeavor, let's look at a pair of NOR gates wired a particular way. You'll recall that the
output of a NOR gate is a voltage only if both inputs aren't voltages:

NOR |01
0 110
1 00

Here's a circuit with two NOR gates, two switches, and a lightbulb:

(|

f]ll

\
L

Notice the oddly contorted wiring: The output of the NOR gate on the left is an input to the NOR gate
on the right, and the output of the right NOR gate is an input to the left NOR gate. This is a type of
feedback. Indeed, just as in the oscillator, an output circles back to become an input. This
idiosyncrasy will be a characteristic of most of the circuits in this chapter.

At the outset, the only current flowing in this circuit is from the output of the left NOR gate. That's
because both inputs to that gate are 0. Now close the upper switch. The output from the left NOR gate
becomes 0, which means the output from the right NOR gate becomes 1 and the lightbulb goes on:

v

‘I||’||Ir —=
L

The magic occurs when you now open the upper switch. Because the output of a NOR gate is 0 if
either input is 1, the output of the left NOR gate remains the same and the light remains lit:

Now this is odd, wouldn't you say? Both switches are open—the same as in the first drawing—yet
now the lightbulb is on. This situation is certainly different from anything we've seen before. Usually
the output of a circuit is dependent solely upon the inputs. That doesn't seem to be the case here.
Moreover, at this point you can close and open that upper switch and the light remains lit. That switch
has no further effect on the circuit because the output of the left NOR gate remains 0.

Now close the lower switch. Because one of the inputs to the right NOR gate is now 1, the output
becomes 0 and the lightbulb goes out. The output of the left NOR gate becomes 1:

—

D -

Now you can open the bottom switch and the lightbulb stays off:

-~ |
V =

o

We're back where we started. At this time, you can close and open the bottom switch with no further
effect on the lightbulb. In summary

%
L

m Closing the top switch causes the lightbulb to go on, and it stays on when the top switch is opened.

m Closing the bottom switch causes the lightbulb to go off, and it stays off when the bottom switch is
opened.

The strangeness of this circuit is that sometimes when both switches are open the light is on, and
sometimes when both switches are open, the light is off. We can say that this circuit has two stable
states when both switches are open. Such a circuit is called a flip-flop, a word also used for beach
sandals and the tactics of politicians. The flip-flop dates from 1918 with the work of English radio
physicist William Henry Eccles (1875-1966) and F.W. Jordan (about whom not much seems to be
known).

A flip-flop circuit retains information. It "remembers." In particular, the flip-flop shown previously
remembers which switch was most recently closed. If you happen to come upon such a flip-flop in
your travels and you see that the light is on, you can surmise that it was the upper switch that was
most recently closed; if the light is off, the lower switch was most recently closed.

A flip-flop is very much like a seesaw. A seesaw has two stable states, never staying long in that
precarious middle position. You can always tell from looking at a seesaw which side was pushed
down most recently.

Although it might not be apparent yet, flip-flops are essential tools. They add memory to a circuit to
give it a history of what's gone on before. Imagine trying to count if you couldn't remember anything.
You wouldn't know what number you were up to and what number comes next! Similarly, a circuit
that counts (which I'll show you later in this chapter) needs flip-flops.

There are a couple of different types of flip-flops. What I've just shown is the simplest and is called
an R-S (or Reset-Set) flip-flop. The two NOR gates are more commonly drawn and labeled as in the
diagram at the top of the next page to give it a symmetrical look.

R
Q

S Q

The output that we used for the lightbulb is traditionally called Q. In addition, there's a second output

called Q (pronounced Q bar) that's the opposite of Q. If Q is 0, then Q is 1, and vice versa. The two
inputs are called S for set and R for reset. You can think of these verbs as meaning "set Q to 1" and
"reset Q to 0." When S is 1 (which corresponds to closing the top switch in the earlier diagram), Q

becomes 1 and Q becomes 0. When R is 1 (corresponding to closing the bottom switch in the earlier

diagram), Q becomes 0 and Q becomes 1. When both inputs are 0, the output indicates whether Q
was last set or reset. These results are summed up in the following table:

Inputs | Outputs

S IR Q Q
10 1 |0
0 (1 |0 |1
0 0 |Q Q

1 |1 |Disallowd

This is called a function table or a logic table or a truth table. It shows the outputs that result from
particular combinations of inputs. Because there are only two inputs to the R-S flip-flop, the number
of combinations of inputs is four. These correspond to the four rows of the table under the headings.

Notice the row second from the bottom when S and R are both 0: The outputs are indicated as Q and
Q. This means that the Q and Q outputs remain what they were before both the S and R inputs became

0. The final row of the table indicates that a situation in which the S and R inputs are both 1 is
disallowed or illegal. This doesn't mean you'll get arrested for doing it, but if both inputs are 1 in this

circuit, both outputs are 0, which violates the notion of Q being the opposite of Q. So when you're
designing circuitry that uses the R-S flip-flop, avoid situations in which the S and R inputs are both 1.

The R-S flip-flop is often drawn as a little box with the two inputs and two outputs labeled like this:

The R-S flip-flop is certainly interesting as a first example of a circuit that seems to "remember"
which of two inputs was last a voltage. What turns out to be much more useful, however, is a circuit
that remembers whether a particular signal was 0 or 1 at a particular point in time.

Let's think about how such a circuit should behave before we actually try to build it. It would have
two inputs. Let's call one of them Data. Like all digital signals, the Data input can be 0 or 1. Let's call
the other one Hold That Bit, which is the digital equivalent of a person saying "Hold that thought."
Normally the Hold That Bit signal is 0, in which case the Data signal has no effect on the circuit.
When Hold That Bit is 1, the circuit reflects the value of the Data signal. The Hold That Bit signal can
then go back to being 0, at which time the circuit remembers the last value of the Data signal. Any
changes in the Data signal have no further effect.

In other words, we want something that has the following function table:

Inputs Outputs

Data Hold That Bit Q

0 1 0
1 1 1
0 0 Q
1 0 Q

In the first two cases, when the Hold That Bit signal is 1, the output Q is the same as the Data input. In
the second two cases, when the Hold That Bit signal is 0, the Q output is the same as it was before.
Notice in the second two cases that when Hold That Bit is 0, the Q output is the same regardless of
what the Data input is. The function table can be simplified a little, like this:

Inputs Outputs

Data | Hold That Bit Q

0 1 0
1 1 1
X 0 Q

The X means "don't care." It doesn't matter what the Data input is because if the Hold That Bit input is
0, the output Q is the same as it was before.

Implementing a Hold That Bit signal based on our existing R-S flip-flop requires that we add two
AND gates at the input end, as in the diagram at the top of the following page.

Reset

Hold That Bit —e

) Q
Set———__J

Recall that the output of an AND gate is 1 only if both inputs are 1. In this diagram, the Q output is 0

]
.

and the Q output is 1.

As long as the Hold That Bit signal is 0, the Set signal has no effect on the outputs:
Reset

—Q

Hold That Bit—

W
;

Set

Similarly, the Reset signal has no effect:
Reset

Hold That Bit—¢

3

.
0 U

Set

Only when the Hold That Bit signal is 1 will this circuit function the same way as the normal R-S
flip-flop shown earlier:
Reset

Hold That Bit——+¢

.
J U

Set

It behaves like a normal R-S flip-flop because now the output of the upper AND gate is the same as
the Reset signal, and the output of the lower AND gate is the same as the Set signal.

But we haven't yet achieved our goal. We want only two inputs, not three. How is this done? If you
recall the original function table of the R-S flip-flop, the case in which Set and Reset were both 1
was disallowed, so we want to avoid that. And it doesn't make much sense for the Set and Reset
signals to now both be 0 because that's simply the case in which the output didn't change. We can
accomplish the same thing in this circuit by setting Hold That Bit to 0.

So it makes sense that if Set is 1, Reset is 0; and if Set is 0, Reset is 1. A signal called Data can be
equivalent to a Set, and the Data signal inverted can be the Reset signal:

Q

Hold That Bit ——e

L
Data

Ll

In this case, both inputs are 0 and the output Q is 0 (which means that Q is 1). As long as Hold That

Bit is 0, the Data input has no effect on the circuit:

]

—-—\
—1

Hold That Bit

A
—)
w,

Data —+——

But when Hold That Bit is 1, the circuit reflects the value of the Data input:

—_—

__\
)

Hold That Bit —{—+

A

k D
Data—

The Q output is now the same as the Data input, and Q is the opposite. Now Hold That Bit can go
back to being 0O:

Hold That Bit

A

Data—

The circuit now remembers the value of Data when Hold That Bit was last 1, regardless of how Data
changes. The Data signal could, for example, go back to 0 with no effect on the output:

Q

i1

Hold That Bit ——

L"
Data

This circuit is called a level-triggered D-type flip-flop. The D stands for Data. Level-triggered
means that the flip-flop saves the value of the Data input when the Hold That Bit input is at a
particular level, in this case 1. (We'll look at an alternative to level-triggered flip-flops shortly.)

Ll

Usually when a circuit like this appears in a book, the input isn't labeled Hold That Bit. It's usually
labeled Clock. Of course, this signal isn't a real clock, but it might sometimes have clocklike
attributes, which means that it might tick back and forth between 0 and 1 on a regular basis. But for
now, the Clock input simply indicates when the Data input is to be saved:

—

Clock

i g Q
Data L

And usually when the function table is shown, Data is abbreviated as D and Clock is abbreviated as
Clk:

Inputs | Outputs

D |Clk | Q| Q-bar

0/1 (0|1

11 110

X0 Q Q-bar

This circuit is also known as a level-triggered D-type latch, and that term simply means that the
circuit latches onto one bit of data and keeps it around for further use. The circuit can also be
referred to as a 1-bit memory. I'll demonstrate in Chapter 16 how very many of these flip-flops can be
wired together to provide many bits of memory.

Saving a multibit value in latches is often useful. Suppose you want to use the adding machine in
Chapter 12 to add three 8-bit numbers together. You'd key in the first number on the first set of
switches and the second number on the second set of switches as usual, but then you'd have to write
down the result. You'd then have to key in that result on one set of switches and key in the third
number on the other set of switches. You really shouldn't have to key in an intermediate result. You
should be able to use it directly from the first calculation.

Let's solve this problem using latches. Let's assemble eight latches in a box. Each of the eight latches
uses two NOR gates and two AND gates and one inverter, as shown previously. The Clock inputs are
all connected. Here's the resultant package:

S S S S S N N

D By Dy Dg Dy D Dy Dy

Clk 8-Bit Latch

QB QB Qb QU Q@ Q@ Q@ Q

AR

This latch is capable of saving 8 bits at once. The eight inputs on the top are labeled D, through D-,
and the eight outputs on the bottom are labeled Q, through Q. The input at the left is the Clock. The

Clock signal is normally 0. When the Clock signal is 1, the 8-bit value on the D inputs is transferred
to the Q outputs. When the Clock signal goes back to 0, that 8-bit value stays there until the next time
the Clock signal is 1.

The 8-Bit Latch can also be drawn with the eight Data inputs and eight Q outputs grouped together as
you see on the following page.
@

D> D,

Clk 8-Bit Latch
Q?_._Ql]

Here's the 8-Bit Adder:

44
By By

As Ay

CO 8-Bit Adder CI
57.50

H

Normally (ignoring what we did with subtraction in the last chapter), the eight A inputs and eight B
inputs are connected to switches, the CI (Carry In) input is connected to ground, and the eight S (Sum)
outputs and CO (Carry Out) are connected to lightbulbs.

In this revised version, the eight S outputs of the 8-Bit Adder can be connected to both the lightbulbs
and the D inputs of the 8-Bit Latch. A switch labeled Save can be the Clock input of the latches to
save a result from the adder:

Switches Switches Lﬂ/ i
D
8-Bit Latch Clk |[— o—J
Q Save
-
N vV
A B
2-to-1 Selector Sel 4—("/
Oiit From Latch
|]
N
A B
—CO 8-Bit Adder CI j
5 —
: =
A J
Lightbulb Lightbulbs

The box labeled 2-Line-to-1-Line Selector lets you choose with a switch whether you want the B
inputs to the adder to come from the second row of switches or from the Q outputs of the latches. You
close the switch to select the outputs from the 8-Bit Latch. The 2-Line-to-1-Line Selector uses eight of
the following circuits:

B —
Select
Out
A

If the Select input is 1, the output of the OR gate is the same as the B input. That's because the output
of the top AND gate is the same as the B input, and the output of the bottom AND gate is 0. Similarly,
if the Select input is 0, the output is the same as the A input. This is summed up in the following
function table:

Inputs Outputs
Select A/B Q
0 0/ X0
0 1(X/1
1 x 010
1 x|[1]1

The box shown in the revised adding machine comprises eight of these 1-bit selectors. All the Select
inputs are wired together.

This revised adding machine isn't handling the Carry Out signal very well. If the addition of two
numbers causes the Carry Out signal to be 1, the signal is ignored when the next number is added in.
One possible solution is to make the Adder, the Latch, and the Selector all 16 bits wide, or at least
wider than the largest sum you'll encounter. I won't really be solving this problem until Chapter 17.

A more interesting approach to the adding machine eliminates an entire row of eight switches. But
first we need to modify the D-type flip-flop slightly by adding an OR gate and an input signal called
Clear. The Clear input is normally 0. But when it's 1, the Q output becomes 0, as shown here:

Clear

Clock ——¢

A

Data

This signal forces Q to be 0 regardless of the other input signals, in effect clearing the flip-flop.

Why do we need this, you might ask? Why can't we clear the flip-flop by setting the Data input to O
and the Clock input to 1? Well, maybe we can't control exactly what's going into the Data input.
Maybe we have a set of eight of these latches wired to the outputs of an 8-Bit Adder, like so:

Switches

8-Bit Adder (I

D

)

A
A

»Clr 8-Bit Latch Clk
Clear Add
Q

bt

Lightbulbs

Notice that the switch labeled Add now controls the Clock input of the latch.

You might find this adder easier to use than the previous one, particularly if you need to add a long
list of numbers. You begin by pressing the Clear switch. That action causes the output of the latches to
be 0, turning off all the lights and also setting the second set of inputs to the 8-Bit Adder to all 0s. You
key in the first number and press the Add button. That number appears on the lights. You then key in
the second number and again press the Add button. The number set up by the switches is added to the
previous total, and it appears on the lights. Just continue keying in more numbers and pressing the
Add switch.

I mentioned earlier that the D-type flip-flop we designed was level-triggered. This means that the
Clock input must change its level from O to 1 in order for the value of the Data input to be stored in
the latch. But during the time that the Clock input is 1, the Data input can change; any changes in the

Data input while the Clock input is 1 will be reflected in the values of the Q and Q outputs.

For some applications, a level-triggered Clock input is quite sufficient. But for other applications, an
edge-triggered Clock input is preferred. An edge trigger causes the outputs to change only when the
Clock makes a transition from 0 to 1. As with the level-triggered flip-flop, when the Clock input is
0, any changes to the Data input don't affect the outputs. The difference in an edge-triggered flip-flop
is that changes to the Data input also don't affect the outputs when the Clock input is 1. The Data input
affects the outputs only at the instant that the Clock changes from 0 to 1.

An edge-triggered D-type flip-flop is constructed from two stages of R-S flip-flops, wired together
this way:

Data

Clock 4{>0—1—¢

|

by

%

\,

o

L

The idea here is that the Clock input controls both the first stage and the second stage. But notice that
the clock is inverted in the first stage. This means that the first stage works exactly like a D-type flip-
flop except that the Data input is stored when the Clock is 0. The outputs of the second stage are
inputs to the first stage, and these are saved when the Clock is 1. The overall result is that the Data

input is saved when the Clock changes from O to 1.

Let's take a closer look. Here's the flip-flop at rest with both the Data and Clock inputs at 0 and the Q

output at 0:
Data '

;

Clock >0

A\

e
DD

Now change the Data input to 1:

Data
g——

Clock 4> >—<

Ll

']

This changes the first flip-flop stage because the inverted Clock input is 1. But the second stage
remains unchanged because the uninverted Clock input is 0. Now change the Clock input to 1:

Data
—
glo— Q
Clock—¢{>0 ~4
. Q
R
L8 [>o_

LN o

This causes the second stage to change, and the Q output goes to 1. The difference is that the Data
input can now change (for example, back to 0) without affecting the Q output:

Data "
S
— Q
Clock >0 | L
» Q
 —
—>o-

The Q and Q outputs can change only at the instant that the Clock input changes from O to 1.

The function table of the edge-triggered D-type flip-flop requires a new symbol, which is an arrow
pointing up (). This symbol indicates a signal making a transition froma 0 to a 1:

Inputs Outputs

DCIkQQ
0|1 0 |1
1|1 1 |0
X0 QQ

The arrow indicates that the output Q becomes the same as the Data input when the Clock makes a
transition from O to 1. This is known as a positive transition of the Clock signal. (A negative

transition is the transition from 1 to 0.) The flip-flop has a diagram like this:

—D Ql—

—>bclk Ql—

The little angle bracket indicates that the flip-flop is edge triggered.

Now I want to show you a circuit using the edge-triggered D-type flip-flop that you can't duplicate
with the level-triggered version. You'll recall the oscillator that we constructed at the beginning of
this chapter. The output of the oscillator alternates between 0 and 1:

[>o Qutput
(J

Let's connect the output of the oscillator to the Clock input of the edgetriggered D-type flip-flop. And

[— D Q
[_DD_I;:» Clk

The output of the flip-flop is itself an input to the flip-flop. It's feedback upon feedback! (In practice,
this could present a problem. The oscillator is constructed out of a relay that's flipping back and forth
as fast as it can. The output of the oscillator is connected to the relays that make up the flip-flop.
These other relays might not be able to keep up with the speed of the oscillator. To avoid these
problems, let's assume that the relay used in the oscillator is much slower than the relays used
elsewhere in these circuits.)

let's connect the Q output to the D input:

L

To see what happens in this circuit, let's look at a function table that illustrates the various changes.

At the start, let's say that the Clock input is 0 and the Q output is 0. That means that the Q output is 1,
which is connected to the D input:

Inputs Outputs

D Clk Q Q

110 |0 |1

When the Clock input changes from 0 to 1, the Q output will become the same as the D input:

Inputs | Outputs

D Clk Q Q

110 |0 |1

But because the Q output changes to 0, the D input will also change to 0. The Clock input is now 1:

Inputs Outputs

D Clk Q Q
10 |0 |1
1|1 1 |0
o/r |1 |0

The Clock input changes to back to 0 without affecting the outputs:

Inputs | Outputs

D Clkk|Q Q
110 |0 |1
101 1 |0
01 1 |0
0/0 |1 |O

Now the Clock input changes to 1 again. Because the D input is 0, the Q output becomes 0 and the Q
output becomes 1:

Inputs | Outputs

D Clk Q Q
10 |0 |1
1|1 1 |0
01 1 |0
0/0 |1 |0
01 0 |1

So the D input also becomes 1:

Inputs | Outputs

D Clk Q Q

141 1 10
01 1 |0
00 1 |0
01 0 |1
11 |0 |1

What's happening here can be summed up very simply: Every time the Clock input changes from 0 to
1, the Q output changes, either from 0 to 1 or from 1 to 0. The situation is clearer if we look at the

timing diagram:
Clk |_

When the Clock input goes from 0 to 1, the value of D (which is the same as Q) is transferred to Q,

thus also changing Q and D for the next transition of the Clock input from O to 1.

If the frequency of the oscillator is 20 Hz (which means 20 cycles per second), the frequency of the Q
output is half that, or 10 Hz. For this reason, such a circuit—in which the Q output is routed back to
the Data input of a flip-flop—is also known as a frequency divider.

Of course, the output from the frequency divider can be the Clock input of another frequency divider
to divide the frequency once again. Here's an arrangement of three of them:

Clk Q Qa Q;
X | |
el
D Q D Q D Q
Clk——p>Clk Q >Clk Q pClk Q

Let's look at the four signals I've labeled at the top of that diagram:

Q

Q;

I'll admit that I've started and ended this diagram at an opportune spot, but there's nothing dishonest
about it: The circuit will repeat this pattern over and over again. But do you recognize anything
familiar about it?

I'll give you a hint. Let's label these signals with Os and 1s:
Clk |e|1f(ef|l|e|l|je]l]|e|l|e|l|e6|l|ef]l

B; | @ | .19 @11 1@ @13 1|8 0] 1. 1

2, | 4 @ 811 ¥ I 1.1 @& B & |L I 1. 1

Q; |® 6 6 @ © 6 6 6|1 1 1 1 1 1 1 1

Do you see it yet? Try turning the diagram 90 degrees clockwise, and read the 4-bit numbers going
across. Each of them corresponds to a decimal number from O through 15:

Binary Decimal

0000 |0
0001 |1
0010 |2
0011 |3
0100 |4
0101 |5
0110 |6

0111 7

1000 |8

1001 |9

1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Thus, this circuit is doing nothing less than counting in binary numbers, and the more flip-flops we
add to the circuit, the higher it will count. I pointed out in Chapter 8 that in a sequence of increasing
binary numbers, each column of digits alternates between 0 and 1 at half the frequency of the column
to the right. The counter mimics this. At each positive transition of the Clock signal, the outputs of the
counter are said to increment, that is, to increase by 1.

Let's string eight flip-flops together and put them in a box:

—»{ Clk 8-Bit Ripple Counter

QB Qs Q& QU Q Q Qi Q

Yy vy v

This is called a ripple counter because the output of each flip-flop becomes the Clock input of the
next flip-flop. Changes ripple through the stages sequentially, and the flip-flops at the end might be
delayed a little in changing. More sophisticated counters are synchronous, in which all the outputs
change at the same time.

I've labeled the outputs Q, through Q. These are arranged so that the output from the first flip-flop in
the chain (Q) is at the far right. Thus, if you connected lightbulbs to these outputs, you could read an

8-bit number. A timing diagram of such a counter could show all eight outputs separately, or it could
show them together, like this:

Clk J |_
'[.]' :X[d@@@@HHHX@BBHHH@:XH@@@@W HXE'E'@@FJE]'I 'IXE'E‘@EIH'I E]E]X:

At each positive transition of the Clock, some Q outputs might change and some might not, but
together they reflect increasing binary numbers.

I said earlier in this chapter that we'd discover some way to determine the frequency of an oscillator.
This is it. If you connect an oscillator to the Clock input of the 8-Bit Counter, the counter will show
you how many cycles the oscillator has gone through. When the total reaches 11111111 (255 in
decimal), it goes back to 00000000. Probably the easiest way to use this counter to determine the

frequency of an oscillator is to connect eight lightbulbs to the outputs of the 8-Bit Counter. Now wait
until all the outputs are O (that is, when none of the lightbulbs are lit) and start a stopwatch. Stop the
stopwatch when all the lights go out again. That's the time required for 256 cycles of the oscillator.
Say it's 10 seconds. The frequency of the oscillator is thus 256 + 10, or 25.6 Hz.

As flip-flops gain features, they also gain in complexity. This one is called an edge-triggered D-type

flip-flop with preset and clear:

~

Clear

Preset

Clock —>o14 : , Q

e D

D /

The Preset and Clear inputs override the Clock and Data inputs. Normally these two inputs are O.
When the Preset input is 1, Q becomes 1 and Q becomes 0. When the Clear input is 1, Q becomes 0

and Q becomes 1. (Like the Set and Reset inputs of an R-S flip-flop, Preset and Clear shouldn't be 1
at the same time.) Otherwise, this behaves like a normal edge-triggered D-type flip-flop:

Inputs Outputs

PreCIrDCIkQQ
1 0 [X/X |1 |0
0 1 [XX [0 |1
0 0 |01 0 |1

0 0 |11 1 10

0 |0 X0 |Q Q
The diagram for the edge-triggered D-type flip-flop with preset and clear looks like this:

Pre

We have now persuaded telegraph relays to add, subtract, and count in binary numbers. This is quite
an accomplishment, particularly considering that all the hardware we've been using was available
more than a hundred years ago. We have still more to discover. But let's now take a short break from
building things and have another look at number bases.

Chapter 15. Bytes and Hex

The two improved adding machines of the last chapter illustrate clearly the concept of data paths.
Throughout the circuitry, 8-bit values move from one component to another. Eight-bit values are
inputs to the adders, latches, and data selectors, and also outputs from these units. Eight-bit values are
also defined by switches and displayed by lightbulbs. The data path in these circuits is thus said to be
8 bits wide. But why 8 bits? Why not 6 or 7 or 9 or 10?

The simple answer is that these improved adding machines were based on the original adding
machine in Chapter 12, which worked with 8-bit values. But there's really no reason why it had to be
built that way. Eight bits just seemed at the time to be a convenient amount—a nice biteful of bits, if
you will. And perhaps I was being just a little bit sneaky, for I now confess that I knew all along (and
perhaps you did as well) that 8 bits of data are known as a byte.

The word byte originated at IBM, probably around 1956. The word had its origins in the word bite
but was spelled with a y so that nobody would mistake the word for bit. For a while, a byte meant
simply the number of bits in a particular data path. But by the mid-1960s, in connection with the
development of IBM's System/360 (their large complex of business computers), the word came to
mean a group of 8 bits.

As an 8-bit quantity, a byte can take on values from 00000000 through 11111111. These values can
represent positive integers from 0 through 255, or if two's complements are used to represent negative
numbers, they can represent both positive and negative integers in the range —128 through 127. Or a
particular byte can simply represent one of 28, or 256, different things.

It turns out that 8 is, indeed, a nice bite size of bits. The byte is right, in more ways than one. One
reason that IBM gravitated toward 8-bit bytes was the ease in storing numbers in a format known as
BCD (which I'll describe in Chapter 23). But as we'll see in the chapters ahead, quite by coincidence
a byte is ideal for storing text because most written languages around the world (with the exception of
the ideographs used in Chinese, Japanese, and Korean) can be represented with fewer than 256
characters. A byte is also ideal for representing gray shades in black-and-white photographs because
the human eye can differentiate approximately 256 shades of gray. And where 1 byte is inadequate
(for representing, for example, the aforementioned ideographs of Chinese, Japanese, and Korean), 2
bytes—which allow the representation of 26, or 65,536, things—usually works just fine.

Half a byte—that is, 4 bits—is sometimes referred to as a nibble (and is sometimes spelled nybble),
but this word doesn't come up in conversation nearly as often as byte.

Because bytes show up a lot in the internals of computers, it's convenient to be able to refer to their
values in as succinct a manner as possible. The eight binary digits 10110110, for example, are
certainly explicit but hardly succinct.

We could always refer to bytes by their decimal equivalents, of course, but that requires converting
from binary to decimal—not a particularly nasty calculation, but certainly a nuisance. I showed one
approach in Chapter 8 that's fairly straightforward. Because each binary digit corresponds to a power
of 2, we can simply write down the digits of the binary number and the powers of 2 underneath.
Multiply each column and add up the products. Here's the conversion of 10110110:

1 0 1 1 0 1 1 0

X128 x64 x32 X16 X8 X4 X2 X1

128] +| O | r|32|T|16|T|O |F|4|T|2]|T]0|=] 182

Converting a decimal number to binary is a bit more awkward. You start with the decimal number
and divide by decreasing powers of 2. For each division, the quotient is a binary digit and the
remainder is divided by the next smallest power of 2. Here's the conversion of 182 back to binary:

182 |54 54 22 6 6 2 0
+128 +64 +32 +l6 +8 +4 2 +]

1 0 1 1 0 1 1 0

Chapter 8 has a more extensive description of this technique. Regardless, converting between binary
and decimal is usually not something that can be done without a paper and pencil or lots of practice.

In Chapter 8, we also learned about the octal, or base-8, number system. Octal uses only the digits 0,
1, 2,3,4,5, 6, and 7. Converting between octal and binary is a snap. All you need remember is the 3-
bit equivalent of each octal digit, as shown in the table on the next page.

Binary Octal
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

If you have a binary number (such as 10110110), start at the rightmost digits. Each group of 3 bits is

an octal digit:
10110110

e

2 6 6
So the byte 10110110 can be expressed as the octal digits 266. This is certainly more succinct, and
octal is indeed one good method for representing bytes. But octal has a little problem.

The binary representations of bytes range from 00000000 through 11111111. The octal
representations of bytes range from 000 through 377. As is clear in the preceding example, 3 bits
correspond to the middle and rightmost octal digits, but only 2 bits correspond to the leftmost octal
digit. This means that an octal representation of a 16-bit number

A | A
isn't the same as the octal representations of the 2 bytes that compose the 16-bit number
10110011 11000101
(WL W W e
% 6 3 5 O 2

In order for the representations of multibyte values to be consistent with the representations of the
individual bytes, we need to use a system in which each byte is divided into equal numbers of bits.
That means that we need to divide each byte into four values of 2 bits each (that would be base 4) or
two values of 4 bits each (base 16).

Base 16. Now that's something we haven't looked at yet, and for good reason. The base-16 number
system is called hexadecimal, and even the word itself is a mess. Most words that begin with the
hexa- prefix (such as hexagon or hexapod or hexameter) refer to six of something. Hexadecimal is
supposed to mean sixteen. And even though The Microsoft Manual of Style for Technical
Publications clearly states, "Do not abbreviate as hex, " everyone always does and I will too.

That's not the only peculiarity of hexadecimal. In decimal, we count like this:

0123456789101112...

In octal, you'll recall, we no longer need digits 8 and 9:

01234567101112...

Similarly, the base-4 number system also doesn't need 4, 5, 6, or 7:

0123101112...

And binary, of course, needs only 0 and 1:

011011 100...

But hexadecimal is different because it requires more digits than decimal. Counting in hexadecimal
goes something like this:

where 10 (pronounced one-zero) is actually 16gN. The question marks indicate that we need six

more symbols to display hexadecimal numbers. What are these symbols? Where do they come from?
Well, they weren't handed down to us in tradition like the rest of our number symbols, so the rational
thing to do is make up six new symbols, for example:

Unlike the symbols used for most of our numbers, these have the benefit of being easy to remember
and identify with the actual quantities they represent. There's a 10-gallon cowboy hat, a football (11

players on a team), a dozen donuts, a black cat (associated with unlucky 13), a full moon that occurs
about a fortnight (14 days) after the new moon, and a knife that reminds us of the assassination of
Julius Caesar on the ides (the 15th day) of March.

Each byte can be expressed as two hexadecimal digits. In other words, a hexadecimal digit is
equivalent to 4 bits, or 1 nibble. The table on the next page shows how to convert between binary,
hexadecimal, and decimal.

Binary Hexadecimal Decimal Binary Hexadecimal | Decimal

0000 |0 0 1000 |8 8

0001 |1 1 1001 |9 9
Pt 1

0010 |2 2 1010 : 10
khﬁ"

0011 |3 3 o | e 11
S/

0100 |4 4 1100 ¥ 12

0101 |5 5 1101 ! 13
nr""*“,;-&
Ay

0110 |6 6 1110 - 14
/

0111 |7 7 TEL 15

Here's how to represent the byte 10110110 in hexadecimal:
1011911

R -

™

And it doesn't matter if we're dealing with multibyte numbers:

10110110 11000101

One byte is always represented by a pair of hexadecimal digits.

Unfortunately (or perhaps, much to your relief), we really aren't going to be using footballs and donuts
to write hexadecimal numbers. It could have been done that way, but it wasn't. Instead, the
hexadecimal system ensures that everybody gets really confused and stays that way. Those six missing

hexadecimal digits are actually represented by the first six letters of the Latin alphabet, like this:

0123456789ABCDEF101112...

The following table shows the real conversion between binary, hexadecimal, and decimal:

Binary Hexadecimal Decimal

0000 |0 0
0001 1 1
0010 |2 2
oo1r |3 3
0100 |4 4
0101 |5 5
0110 |6 6
0111 |7 7
1000 |8 8
1001 |9 9
1010 |A 10
1011 | B 11
1100 |C 12
1101 |D 13
1110 |E 14
1111 |F 15

The byte 10110110 can thus be represented by the hexadecimal number B6 without your drawing a
football. As you'll recall from previous chapters, I've been indicating number bases by subscripts,
such as

10110110Tw0

for binary, and
2312FOUR

for quaternary, and
266EIGHT

for octal, and

182TEN

for decimal. To continue the same system, we can use
B6SIXTEEN

for hexadecimal. But that's clearly excessive. Fortunately, several other, terser, methods of denoting
hexadecimal numbers are common. You can indicate the numbers this way:

B6HEX

In this book, I'll be using mostly a very common approach, which is a lowercase h following the
number, like so:

B6h

In a hexadecimal number, the positions of each digit correspond to powers of 16:

— Number of ones
Number of sixteens
Number of two hundred fifty-sixes

Number of four thousand ninety-sixes

Number of sixty-five thousand
five hundred thirty-sixes

The hexadecimal number 9A48Ch is

9A48Ch =9 x 10000h +
A x 1000h +

4 x 100h +

8x 10h +

Cx1h

This can be written using powers of 16:

9A48Ch =9 x 16% +
Ax163+
4x16% +

8x 16! +

C x 16°

Or using the decimal equivalents of those powers:

9A48Ch = 9 x 65,536 +
A x 4096 +

4 x 256 +

8x16+

Cx1

Notice that there's no ambiguity in writing the single digits of the number (9, A, 4, 8, and C) without a

subscript to indicate the number base. A 9 is a 9 whether it's decimal or hexadecimal. And an A is
obviously hexadecimal-—equivalent to 10 in decimal.

Converting all the digits to decimal lets us actually do the calculation:

9A48Ch =9 x 65,536 +
10 x 4096 +

4x 256 +

8x16+

12x1

And the answer is 631,948. This is how hexadecimal numbers are converted to decimal.

Here's a template for converting any 4-digit hexadecimal number to decimal:

%4196 X256 x16 X1
+ + -+ =

For example, here's the conversion of 79ACh. Keep in mind that the hexadecimal digits A and C are
decimal 10 and 12, respectively:

7 9 A C
x4096 X256 x16 x1
28,672|+| 2304 |+]| 160 |*+] 12 |=]|31,148

Converting decimal numbers to hexadecimal generally requires divisions. If the number is 255 or
smaller, you know that it can be represented by 1 byte, which is two hexadecimal digits. To calculate
those two digits, divide the number by 16 to get the quotient and the remainder. Let's use an earlier
example—the decimal number 182. Divide 182 by 16 to get 11 (whichis a B in hexadecimal) with a
remainder of 6. The hexadecimal equivalent is B6h.

If the decimal number you want to convert is smaller than 65,536, the hexadecimal equivalent will
have four digits or fewer. Here's a template for converting such a number to hexadecimal:

+4096 +256 +16 =

You start by putting the entire decimal number in the box in the upper left corner. That's your first
dividend. Divide by 4096, the first divisor. The quotient goes in the box below the dividend, and the
remainder goes in the box to the right of the dividend. That remainder is the new dividend that you
divide by 256. Here's the conversion of 31,148 back to hexadecimal:

31,148 2476 172 12
+4(96 +256 +16 +1
7 2 10 12

Of course, decimal numbers 10 and 12 correspond to hexadecimal A and C. The result is 79ACh.

One problem with this technique is that you probably want to use a calculator for the divisions, but
calculators don't show remainders. If you divide 31,148 by 4096 on a calculator, you'll get
7.6044921875. To calculate the remainder, you need to multiply 4096 by 7 (to get 28,672) and
subtract that from 31,148. Or multiply 4096 by 0.6044921875, the fractional part of the quotient. (On
the other hand, some calculators can convert between decimal and hexadecimal.)

Another approach to converting decimal numbers through 65,535 to hex involves first separating the
number into 2 bytes by dividing by 256. Then for each byte, divide by 16. Here's a template for doing
it:

+16

Start at the top. With each division, the quotient goes in the box to the left below the divisor, and the
remainder goes in the box to the right. For example, here's the conversion of 51,966:

51,966
+256

[
N
s

+16

12 10 125 14

The hexadecimal digits are 12, 10, 15, and 14, or CAFE, which looks more like a word than a
number! (And if you go there, you may want to order your coffee 56,495.)

As for every other number base, there's an addition table associated with hexadecimal:

+01/2 3456 7/89 AB C DEF

0/0/11(2|3|/4/5/6,7/8|9 A|B |C |D |E |F

1/1/2 /3 /4 567 8|9 A|/B|C |D E F 10

22/ 3|/4/5/6|71/8 /9 A/B|C|D|E |F |10 11

A B C|D 10 |11 |12

4 456 7/8/9|/AB|C|/DEF [10/|11 12 13

5561|7189 A/B|C|D|E|F|10/|11 12 13 |14
6 6/71/8(9 AB|C D|E F|10|11 |12 |13 14 |15
77819 |A B C|DI|E |F |10/11|12 |13 |14 |15 |16
8§ 8/ 9 |A|B|C D|E|F |10/11|12|13 |14 |15 16 |17
99 A/B|C|DIE|F |10/11/12/13/14 |15 |16 |17 |18
A|/A|B | C | D|E |F 10/11|12|13|14 /15 |16 |17 |18 |19
B B C |D|E |F |10/11/12/13|/14/15/16 |17 |18 |19 | 1A
C/C|D|E |F |10/11|12/13|14|15/16|17 |18 |19 |[1A|1B
D/ D|E |F |10/11|12|13|14/15/16|17|18 |19 |1A|1B |1C
E E F |10/11|12|13|14|15/16/17 /18|19 |1A|1B|1C |1D

F|F |10/11/12/13|14|15/16/17|18|19|1A 1B |1C |1D | 1E

You can use the table and normal carry rules to add hexadecimal numbers:

4A3378E2
+ 877AB982
D1AE3264

You'll recall from Chapter 13 that you can use two's complements to represent negative numbers. If
you're dealing with 8-bit signed values in binary, the negative numbers all begin with 1. In
hexadecimal, 2-digit signed numbers are negative if they begin with 8, 9, A, B, C, D, E, or F because
the binary representations of these hexadecimal digits all begin with 1. For example, 99h could
represent either decimal 153 (if you know you're dealing with 1-byte unsigned numbers) or decimal —
103 (if you're dealing with signed numbers).

Or the byte 99h could actually be the number 99 in decimal! This has a certain appeal to it, of course,
but it seems to violate everything we've learned so far. I'll explain how it works in Chapter 23. But
next I must talk about memory.

Chapter 16. An Assemblage of Memory

As we rouse ourselves from sleep every morning, memory fills in the blanks. We remember where
we are, what we did the day before, and what we plan to do today. These memories might come in a
rush or a dribble, and maybe after some minutes a few lapses might persist ("Funny, I don't remember
wearing my socks to bed"), but all in all we can usually reassemble our lives and achieve enough
continuity to commence living another day.

Of course, human memory isn't very orderly. Try to remember something about high school geometry,
and you're likely to start thinking about the kid who sat in front of you or the day there was a fire drill
just as the teacher was about to explain what QED meant.

Nor is human memory foolproof. Indeed, writing was probably invented specifically to compensate
for the failings of human memory. Perhaps last night you suddenly woke up at 3:00 A.M. with a great
idea for a screenplay. You grabbed the pen and paper you keep by your bed specifically for that
purpose, and you wrote it down so you wouldn't forget. The next morning you can read the brilliant
idea and start work on the screenplay. ("Boy meets girl w. car chase & explosions"? That's it?) Or
maybe not.

We write and we later read. We save and we later retrieve. We store and we later access. The
function of memory is to keep the information intact between those two events. Anytime we store
information, we're making use of different types of memory. Paper is a good medium for storing
textual information, and magnetic tape works well for music and movies.

Telegraph relays too—when assembled into logic gates and then flip-flops—can store information.
As we've seen, a flip-flop is capable of storing 1 bit. This isn't a whole lot of information, but it's a
start. For once we know how to store 1 bit, we can easily store 2, or 3, or more.

In Chapter 14, we encountered the level-triggered D-type flip-flop, which is made out of an inverter,

two AND gates, and two NOR gates:
prmm—

— Q

Clock ——¢

AL .

Data—4—-— /

When the Clock input is 1, the Q output is the same as the Data input. But when the Clock input goes
to 0, the Q output holds the last value of the Data input. Further changes to the Data input don't affect
the outputs until the Clock input goes to 1 again. The logic table of the flip-flop is the following:

Inputs | Outputs

D CIk | Q| Q-bar

X0 Q | Q-bar

In Chapter 14, this flip-flop was featured in a couple of different circuits, but in this chapter it will be
used in only one way—to store 1 bit of information. For that reason, I'm going to rename the inputs
and outputs so that they'll be more in accordance with that purpose:

—_—

—— Data Out

Write

Data InL

This is the same flip-flop, but now the Q output is named Data Out, and the Clock input (which started
out in Chapter 14 as Hold That Bit) is named Write. Just as we might write down some information
on paper, the Write signal causes the Data In signal to be written into or stored in the circuit.
Normally, the Write input is 0 and the Data In signal has no effect on the output. But whenever we
want to store the Data In signal in the flip-flop, we make the Write input 1 and then 0 again. As I
mentioned in Chapter 14, this type of circuit is also called a latch because it latches onto data. Here's
how we might represent a 1-bit latch without drawing all of the individual components:

— DI
DO

—W

It's fairly easy to assemble multiple 1-bit latches into a multibit latch. All you have to do is connect
the Write signals:

Write
Inputs
(8 i
W DI W DI W DI W DI W DI WDl W DI W DI
DO Do Do DO DO DO DO DO
\ J

Outputs

This 8-bit latch has eight inputs and eight outputs. In addition, the latch has a single input named Write
that's normally 0. To save an 8-bit value in this latch, make the Write input 1 and then 0 again. This
latch can also be drawn as a single box, like so:

R T T T T T T

DI, DI DI; DI, DI; DI, DI, DI,

W 3-Bit Latch

DO, DO, DO; DO, DO; DO, DO, DO,

YooY oY oy

Or to be more consistent with the 1-bit latch, it can be drawn this way:

Dataln 8 DI 8-Bit Latch DO[_8_ > Data Out

Write W

Another way of assembling eight 1-bit latches isn't quite as straightforward as this. Suppose we want
only one Data In signal and one Data Out signal. But we want the ability to save the value of the Data
In signal at eight different times during the day, or maybe eight different times during the next minute.
And we also want the ability to later check those eight values by looking at just one Data Out signal.

In other words, rather than saving one 8-bit value as in the 8-bit latch, we want to save eight separate
1-bit values.

Why do we want to do it this way? Well, maybe because we have only one lightbulb.

We know we need eight 1-bit latches. Let's not worry right now about how data actually gets stored in
these latches. Let's focus first on checking the Data Out signals of these eight latches using only one
lightbulb. Of course, we could always test the output of each latch by manually moving the lightbulb
from latch to latch, but we'd prefer something a bit more automated than that. In fact, we'd like to use
switches to select which of the eight 1-bit latches we want to look at.

How many switches do we need? If we want to select something from eight items, we need three
switches. Three switches can represent eight different values: 000, 001, 010, 011, 100, 101, 110, and
111.

So here are our eight 1-bit latches, three switches, a lightbulb, and something else that we need in
between the switches and the lightbulb:

W DI W DI W DI W DI W DI W DI W DI W DI
DO DO DO DO DO DO DO DO
V 1 Y Y Y v [

—
- What Is This?
—

The "something else" is that mysterious box with eight inputs on top and three inputs on the left. By
closing and opening the three switches, we can select which of the eight inputs is routed to the output
at the bottom of the box. This output lights up the lightbulb.

So what exactly is "What Is This?"? We've encountered something like it before, although not with so
many inputs. It's similar to a circuit we used in Chapter 14 in the first revised adding machine. At that
time, we needed something that let us select whether a row of switches or the output from a latch was
used as an input to the adder. In that chapter, it was called a 2-Line-to-1-Line Selector. Here we need
an 8-Line-to-1-Line Data Selector:

Data Inputs

A A

Select
Inputs

e

D-
543

el 5,

—

57

D, D

5

B B

8-to-1 Selector

D,

D,

Dy

l

Output

The 8-to-1 Selector has eight Data inputs (shown at the top) and three Select inputs (shown at the
left). The Select inputs choose which of the Data inputs appears at the Output. For example, if the
Select inputs are 000, the Output is the same as D, If the Select inputs are 111, the Output is the same

as D-. If the Select inputs are 101, the Output is the same as D-. Here's the logic table:

Inputs
S2|81/8o

1

1

0

1

1

0

0

1

Outputs
Q

The 8-to-1 Selector is built from three inverters, eight 4-input AND gates, and an 8-input OR gate,

like this:

51
52

o

D>Q_/

o

o

! Output

Now, this is a fairly hairy circuit, but perhaps just one example will convince you that it works.

Suppose S, is 1, S;is 0, and S is 1. The inputs to the sixth AND gate from the top include S, Sl, S,

all of which are 1. No other AND gate has these three inputs, so all the other AND gates will have an
output of 0. The sixth AND gate from the top will possibly have an output of 0 if D5 is 0. Or it will

have an output of 1 if Ds is 1. The same goes for the OR gate at the far right. Thus, if the Select inputs

are 101, the Output is the same as Ds.

Let's recap what we're trying to do here. We're trying to wire eight 1-bit latches so that they can be
individually written to using a single Data In signal and individually examined using a single Data
Out signal. We've already established that we can choose a Data Output signal from one of the eight
latches by using an 8-to-1 Selector, as shown on the following page.

W DI W DI W DI W DI W DI W DI W DI W DI
Do DO DO (B8] Do (318 O DO
1 Y Y [

Vv D D¢ Ds Dy D3 Dy Dy Dy
—1 5
s, 8-to-1 Selector
y 52 Out

(

We're halfway finished. Now that we've established what we need for the output side, let's look at the
input side.

The input side involves the Data input signals and the Write signal. On the input side of the latches,
we can connect all the Data input signals together. But we can't connect the eight Write signals
together because we want to be able to write into each latch individually. We have a single Write
signal that must be routed to one (and only one) of the latches:

vV

‘ Write

Data In

vV
.—
 S— What Is This?
_
J l,—.‘
W DI W DI W DI W DI W DI W DI W DI W DI
DO Do no no 0o [0 [0 O

To accomplish this task, we need another circuit that looks somewhat similar to the 8-to-1 Selector
but actually does the opposite. This is the 3-to-8 Decoder. We've also seen a simple Data Decoder
before—when wiring the switches to select the color of our ideal cat in Chapter 11.

The 3-to-8 Decoder has eight Outputs. At any time, all but one of the Outputs are 0. The exception is
the Output that's selected by the Sy, S, and S, inputs. This Output is the same as the Data Input.

Data In *

—
—

—

e

[:'“‘}

c.
ot

o
Uit

o
1

.-:-.
=)

-

PPy

o

Again, notice that the inputs to the sixth AND gate from the top include S, 31, S,. No other AND gate

has these three inputs. So if the Select inputs are 101, then all the other AND gates will have an output
of 0. The sixth AND gate from the top will possibly have an output of 0 if the Data Input is 0 or an
output of 1 if the Data Input is 1. Here's the complete logic table:

Inputs Outputs

$2/81/80/07 O |O5 (O4 O4 Oz |01 |Og
o000 0 (0 |0 |0 0 |0 |Data
0/0/1/0 0 (0 |0 |0 |0 |Datal0
0/1/0/0 0 [0 |0 |0 |Datal0 |0
0/1/1/0 0 |0 |0 |Datal0 [0 |0
1/o0/ojo |0 |0 |Daal0 |0 |0 |0
1010 |0 |Daal0 [0 |0 |0 |0
1/1/0/0 |pDatai0 |0 |0 |0 |0 |0

1 |1 |1 |Data|0 0 0 0 0 0 0

And here's the complete circuit with the 8 latches:

Address Write Data In
S Data
S,
5 3-to-8 Decoder

W DI||W DI||W DI||W DI||W DI||W DI||W DI[|W DI

DO DO DO DO DO DO DO DO
Ds D, D, D, D, D, D, D,
" -E'l "
| @H 8-to-1 Selector
=1
— S‘.‘

2 Qurput

Data Out

Notice that the three Select signals to the Decoder and the Selector are the same and that I've also
labeled those three signals the Address. Like a post office box number, this 3-bit address determines

which of the eight 1-bit latches is being referenced. On the input side, the Address input determines
which latch the Write signal will trigger to store the Data input. On the output side (at the bottom of
the figure), the Address input controls the 8-to-1 Selector to select the output of one of the eight
latches.

This configuration of latches is sometimes known as read/write memory, but more commonly as
random access memory, or RAM (pronounced the same as the animal). This particular RAM
configuration stores eight separate 1-bit values. It can be represented this way:

—f:\[]
Address — A,
— 1A,
8x1 RAM DOpF—Data O
Data In —DI i DC Jata Out
Write — W

It's called memory because it retains information. It's called read/write memory because you can
store a new value in each latch (that is, write the value) and because you can determine what's stored
in each latch (that is, you can later read the value). It's called random access memory because each
of the eight latches can be read from or written to simply by changing the Address inputs. In contrast,
some other types of memory have to be read sequentially—that is, you'd have to read the value stored
at address 100 before you could read the value stored at address 101.

A particular configuration of RAM is often referred to as a RAM array. This particular RAM array is
organized in a manner called in abbreviated form 8 x 1 (pronounced eight by one). Each of the eight
values in the array is 1 bit. Multiply the two values to get the total number of bits that can be stored in
the RAM array.

RAM arrays can be combined in various ways. For example, you can take two 8 x 1 RAM arrays and
arrange them so that they are addressed in the same way:

J'J:"‘l‘.l

Address ! I
A,

Data In DI

8x1 RAM DO/}—— Data Out

Write W

8x1 RAM DO}— Data Out
Data In DI

- \Kj

The Address and Write inputs of the two 8 x 1 RAM arrays are connected, so the result is an 8 x 2
RAM array:

— Ay
Address — A,
—1A,
o 8x2 RAM D20 | Data Out
Data In Hp B,
—1DI,
Write —'W

This RAM array stores eight values, but each of them is 2 bits in size.

Or the two 8 x 1 RAM arrays can be combined in much the same way that the individual latches were
combined—Dby using a 2-to-1 Selector and a 1-to-2 Decoder, as shown on the next page.

Write Address Data In Select

1-to-2 Decoder S—e

DO, DO,

W AgAA, DI W AjA;A, DI

8x1 RAM 8x1 RAM
DO DO
2-to-1 Selector

S, I

Data Out

The Select input that goes to both the Decoder and the Selector essentially selects between the two 8
x 1 RAM arrays. It's really a fourth address line. So this is actually a 16 x 1 RAM array:

— ell"{{"
i —A
A 5¢ I
ddress =
—A3 16x1 RAM DO}— Data Out
Data In— DI
Write —W

This RAM array stores 16 values, each of which is 1 bit.

The number of values that a RAM array stores is directly related to the number of Address inputs.
With no Address inputs (which is the case with the 1-bit latch and the 8-bit latch), only one value can
be stored. With one Address input, two values are possible. With two Address inputs, four values are
stored. With three Address inputs, eight values, and with four Address inputs, sixteen values. The
relationship is summed up by this equation:

Number of values in RAM array = 2'Vumber of Address inputs

I've demonstrated how small RAM arrays can be constructed, and it shouldn't be difficult to imagine
much larger ones. For example

Address _10_ > Addr
Data In I> DI 1024x8 DO I>Dal:.1 Out

RAM

Write ——»{ W

This RAM array stores a total of 8196 bits, organized as 1024 values of eight bits each. There are ten
Address inputs because 2'° equals 1024. There are eight Data inputs and eight Data outputs.

In other words, this RAM array stores 1024 bytes. It's like a post office with 1024 post office boxes.
Each one has a different 1-byte value inside (which may or may not be better than junk mail).

One thousand twenty-four bytes is known as a kilobyte, and herein lies much confusion. The prefix
kilo (from the Greek khilioi, meaning a thousand) is most often used in the metric system. For
example, a kilogram is 1000 grams and a kilometer is 1000 meters. But here I'm saying that a kilobyte
is 1024 bytes—not 1000 bytes.

The problem is that the metric system is based on powers of 10, and binary numbers are based on
powers of 2, and never the twain shall meet. Powers of 10 are 10, 100, 1000, 10000, 100000, and so
on. Powers of 2 are 2, 4, 8, 16, 32, 64, and so on. There is no integral power of 10 that equals some
integral power of 2.

But every once in a while they do come close. Yes, 1000 is fairly close to 1024, or to put it more
mathematically using an "approximately equal to" sign:

210~ 10

Nothing is magical about this relationship. All it implies is that a particular power of 2 is

approximately equal to a particular power of 10. This little quirk allows people to conveniently refer
to a kilobyte of memory when they really mean 1024 bytes.

Kilobyte is abbreviated K or KB. The RAM array shown above can be said to store 1024 bytes or 1
kilobyte or 1K or 1 KB.

What you don't say is that a 1-KB RAM array stores 1000 bytes, or (in English) "one thousand bytes."
It's more than a thousand—it's 1024. To sound like you know what you're talking about, you say either
"1K" or "one kilobyte."

One kilobyte of memory has eight Data inputs, eight Data outputs, and ten Address inputs. Because the
bytes are accessed by ten Address inputs, the RAM array stores 2'° bytes. Whenever we add another
address input, we double the amount of memory. Each line of the following sequence represents a
doubling of memory:

1 kilobyte = 1024 bytes = 219 bytes ~ 10 bytes

2 kilobytes = 2048 bytes = 211 bytes

4 kilobytes = 4096 bytes = 212 bytes

8 kilobytes = 8192 bytes = 213 bytes

16 kilobytes = 16,384 bytes = 21 bytes

32 kilobytes = 32,768 bytes = 21> bytes

64 kilobytes = 65,536 bytes = 216 bytes

128 kilobytes = 131,072 bytes = 27 bytes

256 kilobytes = 262,144 bytes = 218 bytes

512 kilobytes = 524,288 bytes = 219 bytes

1,024 kilobytes = 1,048,576 bytes = 220 bytes ~ 10° bytes

Note that the numbers of kilobytes shown on the left are also powers of 2.

With the same logic that lets us call 1024 bytes a kilobyte, we can also refer to 1024 kilobytes as a
megabyte. (The Greek word megas means great.) Megabyte is abbreviated MB. And the memory
doubling continues:

1 megabyte = 1,048,576 bytes = 220 bytes ~ 10° bytes

2 megabytes = 2,097,152 bytes = P bytes

4 megabytes = 4,194,304 bytes = 2%? bytes

8 megabytes = 8,388,608 bytes = 223 bytes

16 megabytes = 16,777,216 bytes = 2°* bytes

32 megabytes = 33,554,432 bytes = 22> bytes

64 megabytes = 67,108,864 bytes = 2%° bytes

128 megabytes = 134,217,728 bytes = 2%7 bytes

256 megabytes = 268,435,456 bytes = 228 bytes

512 megabytes = 536,870,912 bytes = 22 bytes

1,024 megabytes = 1,073,741,824 bytes = 230 bytes ~ 10° bytes

The Greek work gigas means giant, so 1024 megabytes are called a gigabyte, which is abbreviated
GB.

Similarly, a terabyte (teras means monster) equals 2* bytes (approximately 10'?) or
1,099,511,627,776 bytes. Terabyte is abbreviated TB.

A kilobyte is approximately a thousand bytes, a megabyte is approximately a million bytes, a gigabyte
is approximately a billion bytes, and a terabyte is approximately a trillion bytes.

Ascending into regions that few have traveled, a petabyte equals 2°° bytes or 1,125,899,906,842,624
bytes, which is approximately 10" or a quadrillion. An exabyte equals 2%° bytes or
1,152,921,504,606,846,976 bytes, approximately 10'® or a quintillion.

Just to provide you with a little grounding here, home computers purchased at the time this book was
written (1999) commonly have 32 MB or 64 MB or sometimes 128 MB of random access memory.
(And don't get too confused just yet—I haven't mentioned anything about hard drives; I'm talking only
about RAM.) That's 33,554,432 bytes or 67,108,864 bytes or 134,217,728 bytes.

People, of course, speak in shorthand. Somebody who has 65,536 bytes of memory will say, "I have
64K (and I'm a visitor from the year 1980)." Somebody who has 33,554,432 bytes will say, "I have
32 megs." That rare person who has 1,073,741,824 bytes of memory will say, "I've got a gig (and I'm
not talking music)."

Sometimes people will refer to kilobits or megabits (notice bits rather than bytes), but this is rare.
Almost always when people talk about memory, they're talking number of bytes, not bits. (Of course,
to convert bytes to bits, multiply by 8.) Usually when kilobits or megabits come up in conversation, it
will be in connection with data being transmitted over a wire and will occur in such phrases as
"kilobits per second" or "megabits per second." For example, a 56K modem refers to 56 kilobits per
second, not kilobytes.

Now that we know how to construct RAM in any array size we want, let's not get too out of control.
For now, let's simply assume that we have assembled 65,536 bytes of memory:

Address I> Addr
Data In I>1_}1 64Kx8 DO I>I);1ra Out

RAM

Write —»|W

Why 64 KB? Why not 32 KB or 128 KB? Because 65,536 is a nice round number. It's 2'°. This
RAM array has a 16-bit address. In other words, the address is 2 bytes exactly. In hexadecimal, the
address ranges from 0000h through FFFFh.

As Iimplied earlier, 64 KB was a common amount of memory in personal computers purchased
around 1980, although it wasn't constructed from telegraph relays. But could you really build such a
thing using relays? I trust you won't consider it. Our design requires nine relays for each bit of
memory, so the total 64K x 8 RAM array requires almost 5 million of them!

It will be advantageous for us to have a control panel that lets us manage all this memory—to write
values into memory or examine them. Such a control panel has 16 switches to indicate an address, 8

switches to define an 8-bit value that we want to write into memory, another switch for the Write
signal itself, and 8 hghtbulbs to display a particular 8-bit value, as shown on the following page.

64 KB RAM Control Panel

t@f@i@ﬁ@@f@@@@'@

AIH‘ f"‘iu ﬁh Au AI] Ajp "Ag Ay Ay Ag A Ay A A

@@@ﬁ??!f@_';@ 0

Quu\.f..nm (s f/,(“@s@(m jC@ . 'Write . Takeover

All the switches are shown in their off (0) positions. I've also included a switch labeled Takeover.
The purpose of this switch is to let other circuits use the same memory that the control panel is
connected to. When the switch is set to O (as shown), the rest of the switches on the control panel
don't do anything. When the switch is set to 1, however, the control panel has exclusive control over
the memory.

‘.i

This is a job for a bunch of 2-to-1 Selectors. In fact, we need 25 of them+—16 for the Address signals,
8 for the Data input switches, and another for the Write switch. Here's the circuit:

Data
Write In Address 25 Switches

C T8¥ Y

Takeover |

¥]

25 2-to-1 Selectors

b ()
8 Lightbulbs
16 » Addr T
64K x8 DO (s

5 DI RAM
| W/ i
Data
Qut

When the Takeover switch is open (as shown), the Address, Data input, and Write inputs to the 64K x

8 RAM array come from external signals shown at the top left of the 2-to-1 Selectors. When the
Takeover switch is closed, the Address, Data input, and Write signals to the RAM array come from
the switches on the control panel. In either case, the Data Out signals from the RAM array go to the
eight lightbulbs and possibly someplace else.

I'll draw a 64K x 8 RAM array with such a control panel this way:

Control Panel

Address I> Addr
: DO[F SData Out
Data In Z){DI 64Kx8 >

RAM

Write —»| W

When the Takeover switch is closed, you can use the 16 Address switches to select any of 65,536
addresses. The lightbulbs show you the 8-bit value currently stored in memory at that address. You
can use the 8 Data switches to define a new value, and you can write that value into memory using the
Write switch.

The 64K x 8 RAM array and control panel can certainly help you keep track of any 65,536 8-bit
values you may need to have handy. But we have also left open the opportunity for something else—
some other circuitry perhaps—to use the values we have stored in memory and to write other ones in
as well.

There's one more thing you have to remember about memory, and it's very important: When I
introduced the concept of logic gates in Chapter 11, I stopped drawing the individual relays that
compose these gates. In particular, I no longer indicated that every relay is connected to some kind of
supply of electricity. Whenever a relay is triggered, electricity is flowing through the coils of the
electromagnet and holding a metal contact in place.

So if you have a 64K x 8 RAM array filled to the brim with 65,536 of your favorite bytes and you turn
off the power to it, what happens? All the electromagnets lose their magnetism and with a loud thunk,
all the relay contacts return to their untriggered states. And the contents of this RAM? They all go
POOF! Gone forever.

This is why random access memory is also called volatile memory. It requires a constant supply of
electricity to retain its contents.

Chapter 17. Automation

The human species is often amazingly inventive and industrious but at the same time profoundly lazy.
It's very clear that we humans don't like to work. This aversion to work is so extreme—and our
ingenuity so acute—that we're eager to devote countless hours designing and building devices that
might shave a few minutes off our workday. Few fantasies tickle the human pleasure center more than
a vision of relaxing in a hammock watching some newfangled contraption we just built mow the lawn.

I'm afraid I won't be showing plans for an automatic lawn-mowing machine in these pages. But in this
chapter, through a progression of ever more sophisticated machines, I will automate the process of
adding and subtracting numbers. This hardly sounds earth-shattering, I know. But the final machine in
this chapter will be so versatile that it will be able to solve virtually any problem that makes use of
addition and subtraction, and that includes a great many problems indeed.

Of course, with sophistication comes complexity, so some of this might be rough going. No one will
blame you if you skim over the excruciating details. At times, you might rebel and promise that you'll
never seek electrical or mechanical assistance for a math problem ever again. But stick with me
because by the end of this chapter we'll have invented a machine we can legitimately call a computer.

The last adder we looked at was in Chapter 14. That version included an 8-bit latch that accumulated
a running total entered on one set of eight switches:

Switches
A B

8-Bit Adder CI 1
5 rre———

DI

Clr 8-Bit Latch Clk ™

Clear Add
DO

i

Lightbulbs

—
A\
N

As you'll recall, an 8-bit latch uses flip-flops to store an 8-bit value. To use this device, you first
momentarily press the Clear switch to set the stored contents of the latch to all zeros. Then you use the
switches to enter your first number. The adder simply adds this number to the zero output of the latch,
so the result is the number you entered. Pressing the Add switch stores that number in the latch and
turns on some lightbulbs to display it. Now you set up the second number on the switches. The adder
adds this one to the number stored in the latch. Pressing the Add button again stores the total in the
latch and displays it using the lightbulbs. In this way, you can add a whole string of numbers and
display the running total. The limitation, of course, is that the eight lightbulbs can't display a total
greater than 255.

At the time I showed this circuit to you in Chapter 14, the only latches that I had introduced so far
were level triggered. In a level-triggered latch, the Clock input has to go to 1 and then back to 0 in
order for the latch to store something. During the time the Clock input is 1, the data inputs of the latch
can change and these changes will affect the stored output. Later in that chapter, I introduced edge-
triggered latches. These latches save their values in the brief moment that the Clock input goes from 0
to 1. Edge-triggered latches are often somewhat easier to use, so I want to assume that all the latches
in this chapter are edge triggered.

A latch used to accumulate a running total of numbers is called an accumulator. But we'll see later in
this chapter that an accumulator need not simply accumulate. An accumulator is often a latch that
holds first one number and then that number plus or minus another number.

The big problem with the adding machine shown above is fairly obvious: Say you have a list of 100
binary numbers you want to add together. You sit down at the adding machine and doggedly enter
each and every number and accumulate the sum. But when you're finished, you discover that a couple
of the numbers on the list were incorrect. Now you have to do the whole thing over again.

But maybe not. In the preceding chapter, we used almost 5 million relays to build a RAM array
containing 64 KB of memory. We also wired a control panel (shown on page 204) that let us close a
switch labeled Takeover and literally take over all the writing and reading of this RAM array using
switches.

Control
Panel

Address "1 Y Addr

Data In —3 DI ??E:? DO E »Data Qut
AN

Write ——a W

If you had typed all 100 binary numbers into this RAM array rather than directly into the adding
machine, making a few corrections would be a lot easier.

So now we face the challenge of connecting the RAM array to the accumulating adder. It's pretty
obvious that the RAM Data Out signals replace the switches to the adder, but it's perhaps not so
obvious that a 16-bit counter (such as we built in Chapter 14) can control the address signals of the
RAM array. The Data Input and Write signals to the RAM aren't needed in this circuit:

Control
Panel

&

64Kx8 -
R AM Do

J-"iL

V A B
L_(/ 8-Bit I
. Adder i

Clear g

Oscillator —9#|Clk
16-Bit Counter |16 Addr

g

Lightbulbs

This is certainly not the easiest piece of calculating equipment ever invented. To use it, you first must
close the switch labeled Clear. This clears the contents of the latch and sets the output of the 16-bit
counter to 0000h. Then you close the Takeover switch on the RAM control panel. You can then enter
a set of 8-bit numbers that you want to add beginning at RAM address 0000h. If you have 100
numbers, you'll store these numbers at addresses 0000h through 0063h. (You should also set all the
unused entries in the RAM array to 00h.) You can then open the Takeover switch of the RAM control
panel (so that the control panel no longer has control over the RAM array) and open the Clear switch.
Then just sit back and watch the flashing lightbulbs.

Here's how it works: When the Clear switch is first opened, the address of the RAM array is 0000h.
The 8-bit value stored in the RAM array at that address is an input to the adder. The other input to the
adder is 00h because the latch is also cleared.

The oscillator provides a clock signal—a signal that alternates between 0 and 1 very quickly. After
the Clear switch is opened, whenever the clock changes froma 0 to a 1, two things happen
simultaneously: The latch stores the sum from the adder, and the 16-bit counter increments, thus
addressing the next value in the RAM array. The first time the clock changes from O to 1 after the
Clear switch is opened, the latch stores the first value and the counter increments to 0001h. The
second time, the latch stores the sum of the first and second values, and the counter increments to
0002h. And so on.

Of course, I'm making some assumptions here. Above all, I'm assuming that the oscillator is slow
enough to allow all the rest of the circuitry to work. With each stroke of the clock, a lot of relays must

trigger other relays before a valid sum shows up at the output of the adder.

One problem with this circuit is that we have no way of stopping it! At some point, the lightbulbs will
stop flashing because all the rest of the numbers in the RAM array will be 00h. At that time, you can
read the binary sum. But when the counter eventually reaches FFFFh, it will roll over (just like a car
odometer) to 0000h and this automated adder will begin adding the numbers again to the sum that was
already calculated.

This adding machine has other problems as well. All it does is add, and all it adds are 8-bit numbers.
Not only is each number in the RAM array limited to 255, but the sum is limited to 255 as well. The
adder also has no way to subtract numbers, although it's possible that you're using negative numbers
in two's complements, in which case this machine is limited to handling numbers from -128 through
127. One obvious way to make it add larger numbers (for example, 16-bit values) is to double the
width of the RAM array, the adder, and the latch, as well as provide eight more lightbulbs. But you
might not be willing to make that investment quite yet.

Of course, I wouldn't even mention these problems unless I knew we were going to solve them
eventually. But the problem I want to focus on first is yet another. What if you didn't need to add 100
numbers together in one big sum? What if instead you wanted to use an automated adder to add 50
pairs of numbers to get 50 different sums? Or maybe you'd like a machine versatile enough to add
pairs of numbers together, or 10 numbers together, or 100. And you want all the results to be
available for your convenient perusal.

The automated adder shown previously displays the running total on a set of lightbulbs attached to the
latch. This approach is no good if you want to add 50 pairs of numbers together to get 50 different
sums. Instead, you probably want the results to be stored back in the RAM array. That way, you can
use the RAM control panel to examine the results at your convenience. That control panel has its own
lightbulbs specifically for this purpose.

What this means is that we can get rid of the lightbulbs connected to the latch. But instead, the output
from the latch must be connected to the data input of the RAM array so that the sums can be written
into the RAM:

Control
Panel

Clr @

.

16-Bit
Counter E> Addr |
—»{ Clk G4K%8 pols
4!.,> M RAM -
—| W
A B
8-Bit :
I
Adder
5
b -
—»Clr Dl
8-Bit
: Larch
—| 1k DO
”

I've eliminated some other parts of the automated adder in this diagram as well, specifically the
oscillator and the Clear switch. I removed them because it's no longer at all obvious where the Clear
and Clock inputs to the counter and the latch will come from. Moreover, now that we've made use of
the RAM data inputs, we need a way to control the RAM Write signal.

So let's not worry about the circuit for a moment and instead focus on the problem we're trying to
solve. What we're trying to do here is configure an automated adder so that it's not restricted merely
to accumulating a running total of a bunch of numbers. We want to have complete freedom in how
many numbers we add and how many different sums are saved in RAM for later examination.

For example, suppose we want to add three numbers together and then add two numbers together and
then add another three numbers together. We might imagine typing these numbers into the RAM array
beginning at address 0000h so that the contents of the memory look like this:

D000h: | 27h

<— First sum goes here

0004h: | 1Fh

<— Second sum goes here

0007h: | 33h

<4— Third sum goes here

This is how I'll be showing a section of memory in this book. The boxes represent the contents of the
memory. Each byte of memory is in a box. The address of that box is at the left. Not every address
needs to be indicated because the addresses are sequential and you can always figure out what
address applies to a particular box. At the right are some comments about this memory. These
particular comments indicate that we want the automated adder to store the three sums in the empty
boxes. (Although these boxes are empty, the memory isn't necessarily empty. Memory always contains
something, even if it's just random data. But right now it doesn't contain anything useful.)

Now I know you're tempted to practice your hexadecimal arithmetic and fill in the little boxes
yourself. But that's not the point of this demonstration. We want the automated adder to do the
additions for us.

Instead of making the automated adder do just one thing—which in the first version involved adding
the contents of a RAM address to the 8-bit latch that I've called the accumulator—we actually want it
now to do four different things. To begin an addition, we want it to transfer a byte from memory into
the accumulator. I'll call this operation Load. The second operation we need to perform is to Add a
byte in memory to the contents of the accumulator. Third, we need to take a sum in the accumulator
and Store it in memory. Finally, we need some way to Halt the automated adder.

In gory detail, what we want the automated adder to do in this particular example is this:
m [oad the value at address 0000h into the accumulator.

m Add the value at address 0001h to the accumulator.

m Add the value at address 0002h to the accumulator.

m Store the contents of the accumulator at address 0003h.

m [oad the value at address 0004h into the accumulator.

m Add the value at address 0005h to the accumulator.

m Store the contents of the accumulator at address 0006h.

m [oad the value at address 0007h into the accumulator.

Add the value at address 0008h to the accumulator.
Add the value at address 0009h to the accumulator.
Store the contents of the accumulator at address 000Ah.

Halt the workings of the automated adder.

Notice that just as in the original automated adder, each byte of memory is still being addressed
sequentially beginning at 0000h. The original automated adder simply added the contents of the
memory at that address to the contents of the accumulator. In some cases, we still want to do that. But
we also sometimes want to Load the accumulator directly with a value in memory or to Store the
contents of the accumulator in memory. And after everything is done, we want the automated adder to
simply stop so that the contents of the RAM array can be examined.

How can we accomplish this? Well, it's not sufficient to simply key in a bunch of numbers in RAM
and expect the automated adder to do the right thing. For each number in RAM, we also need some
kind of numeric code that indicates what the automated adder is to do: Load, Add, Store, or Halt.

Perhaps the easiest (but certainly not the cheapest) way to store these codes is in a whole separate
RAM array. This second RAM array is accessed at the same time as the original RAM array. But
instead of containing numbers to be added, it contains the codes that indicate what the automated
adder is supposed to do with the corresponding address in the original RAM array. These two RAM
arrays can be labeled Data (the original RAM array) and Code (the new one):

Control
Panel

&

GAKxS :I|> &]
RAM DOE Code

t:> Addr

16-Bit
Counter

Control
Panel

> Addr
64 KxH , . -
’j>131 R AM DO 8 > “Darta
— W

We've already established that our new automated adder needs to be able to write sums into the
original RAM array (labeled Data). But the new RAM array (labeled Code) will be written to solely
through the control panel.

We need four codes for the four actions we want the new automated adder to do. These codes can be

anything we want to assign. Here are four possibilities:

Operation Code

Load 10h
Store 11h
Add 20h
Halt FFh

So to perform the three sets of addition in the example I just outlined, you'll need to use the control
panel to store the following values in the Code RAM array:

0000h: | 10h | Load

20h | Add

20h | Add

1 1h | Store
0004h: | 10h | Load

20h | Add

11h | Store

0007h: | 10h | Load
20h | Add
20h | Add

11k | Store

000Bh: | FFh | Halt

You might want to compare the contents of this RAM array with the RAM array containing the data
we want to add (shown on page 211). You'll notice that each code in the Code RAM corresponds to a
value in the Data RAM that is to be loaded into or added to the accumulator, or the code indicates that
a value is to be stored back in memory. Numeric codes used in such a manner are often called
instruction codes, or operation codes, or (most concisely) opcodes. They "instruct" circuitry to
perform a certain "operation."

As I mentioned earlier, the output of the 8-bit latch in the original automated adder needs to be an
input to the Data RAM array. That's how the Store instruction works. Another change is necessary:
Originally, the output of the 8-Bit Adder was the input to the 8-bit latch. But now, to carry out the
Load instruction, the output of the Data RAM array must sometimes be the input to the 8-bit latch.
What's needed is a 2-Line-to-1-Line Data Selector. The revised automated adder looks like the
illustration on the next page.

Control
Panel

{

f’]ﬂ{;i" DOE “Code”

t> Addr

Clr

16-Bit
i | -+
Counter Conrrol

Clk Panel

&

Addr “Data”

DI Ei:iﬂ DOLE

8-Bit ¢

Adder
1

\ U)

—5 2-to-1 Selecror

U
Clr

—
8-Bir Latch
—{ K

‘'

el

K}

This diagram is missing a few pieces, but it shows all the 8-bit data paths between the various
components. The 16-bit counter provides an address for the two RAM arrays. The output of the Data
RAM array goes into the 8-Bit Adder, as usual, to perform the Add instruction. But the input to the 8-
bit latch can be either the output of the Data RAM array (in the case of a Load instruction) or the
output of the adder (in the case of an Add instruction). This situation requires a 2-to-1 Selector. The
output of the latch circles back to the adder, as usual, but it's also the data input of the Data RAM
array for a Store instruction.

What this diagram is missing are all the little signals that control these components, known
collectively as the control signals. These include the Clock and Clear inputs to the 16-bit counter, the
Clock and Clear inputs to the 8-bit latch, the Write input to the Data RAM array, and the Select input
to the 2-to-1 Selector. Some of these signals will obviously be based on the output of the Code RAM
array. For example, the Select input to the 2-to-1 Selector must be 0 (selecting the Data RAM output)
if the output of the Code RAM array indicates a Load instruction. The Write input to the Data RAM
array must be 1 only when the opcode is a Store instruction. These control signals can be generated

by various combinations of logic gates.

With a minimal amount of extra hardware and the addition of a new opcode, we can also persuade
this circuit to subtract a number from the value in the accumulator. The first step is to expand the table
of operation codes:

Operation | Code

Load 10h
Store 11h
Add 20h

Subtract 21h

Halt FFh

The codes for Add and Subtract differ only by the least-significant bit of the code value, which we'll
call C,. If the operation code is 21h, the circuit should do the same thing it does for an Add

instruction, except that the data out from the Data RAM array is inverted before it goes into the adder,
and the carry input to the adder is set to 1. The C, signal can perform both those tasks in this revised

automated adder that includes an inverter:

Control
Panel

§

a4 Kxl - Ty TR T
RAM [Code

t} Addr

—| Clr

16-Bit —~

Counter Control

Panel

§

Al e
el “Data

Bk xs DO !

3] RAM
Inwverter
!

=
G a SBit
! Adder

g &

— 5 2-to-1 Selector
g

8-Bit Latch

:

Jor

LU

Clr

—
—|Clk

b

Now suppose we wish to add 56h and 2Ah together and then subtract 38h from the sum. You can do it
with the following codes and data stored in the two RAM arrays:

“Code” “Data”
0000h: | 10h | Load 0000h: | 56h
20h | Add 2Ah
21h | Subtract 38h
11h | Store <— Result goes here
FFh | Halt

After the Load operation, the accumulator contains the value 56h. After the Add operation, the
accumulator contains the sum of 56h and 2Ah, or 80h. The Subtract operation causes the bits of the

next value in the Data RAM array (38h) to be inverted. The inverted value C7h is added to 80h with
the carry input of the adder set to 1:

C7h
+ 80h

+ 1h
48h

The result is 48h. (In decimal, 86 plus 42 minus 56 equals 72.)

One persistent problem that hasn't yet been adequately addressed is the meager 8-bit data width of the
adder and everything else that's attached to it. In the past, the only solution I've offered is to connect
two 8-Bit Adders (and two of mostly everything else) together to get 16-bit devices.

But a much less expensive solution is possible. Suppose you want to add two 16-bit numbers, for
example:
76ABh

+ 232Ch

This 16-bit addition is the same as separately adding this rightmost byte (often called the low-order
byte):

ABh
+ 2Ch
D7h
and then the leftmost, or high-order, byte:
76h
+ 23h
99h
for a result of 99D7h. So if we store the two 16-bit numbers in memory like this:
“Code” “Data”™
0000h: | 10h | Load 0000h: | ABh
20h | Add 2Ch
11h | Store <— Low-order byte result
10h | Load 76h
20h | Add 23h
11h | Store «— High-order byte result
FFh | Halt

the result D7h will be stored at address 0002h, and the result 99h will be stored at address 0005h.

Of course, this won't work all the time. It works for the numbers I've chosen as an example, but what
if the two 16-bit numbers to be added were 76 ABh and 236Ch? In that case, adding the 2 low-order

bytes results in a carry:

ABh
+ 6Ch
117h

This carry must be added to the sum of the 2 high-order bytes:
1h
+ 76h
+ 23h
9Ah

for a final result of 9A17h.

Can we enhance the circuitry of our automated adding machine to add two 16-bit numbers correctly?
Yes, we can. All we need do is save the Carry Out bit from the 8-Bit Adder when the first addition
is performed and then use that Carry Out bit as the Carry Input bit to the next addition. How can a bit
be saved? By a 1-bit latch, of course; this time, the latch is known as the Carry latch.

To use the Carry latch, another operation code is needed. Let's call it Add with Carry. When you're
adding 8-bit numbers together, you use the regular old Add instruction. The carry input to the adder is
0, and the carry output from the adder is latched in the Carry latch (although it need not be used at
all).

If you want to add two 16-bit numbers together, you use the regular Add instruction for adding the
low-order bytes. The carry input to the adder is 0 and the carry output is latched in the Carry latch. To
add the 2 high-order bytes, you use the new Add with Carry instruction. In this case, the two numbers
are added using the output of the Carry latch as the carry input to the adder. So if the first addition
resulted in a carry, that carry bit is used in the second addition. If no carry resulted, the output from
the Carry latch is 0.

If you're subtracting one 16-bit number from another, you need another new instruction; this one is
called Subtract with Borrow. Normally, a Subtract instruction requires that you invert the subtrahend
and set the carry input of the adder to 1. A carry out of 1 is normal and should usually be ignored. If
you're subtracting a 16-bit number, however, that carry output should be saved in the Carry latch. In
the second subtraction, the carry input to the adder should be set to the result of the Carry latch.

With the new Add with Carry and Subtract with Borrow operations, we have a total of seven
opcodes so far:

Operation Code
Load 10h
Store 11h
Add 20h
Subtract 21h

Add with Carry 22h

Subtract with Borrow | 23h

Halt FFh

The number sent to the adder is inverted for a Subtract or a Subtract with Borrow operation. The
carry output of the adder is the data input to the Carry latch. The latch is clocked whenever an Add,
Subtract, Add with Carry, or Subtract with Borrow operation is being performed. The carry input of
the 8-Bit Adder is set to 1 when a Subtract operation is performed or when the data output of the
Carry latch is 1 and an Add with Carry or Subtract with Borrow operation is being performed.

Keep in mind that the Add with Carry instruction causes the carry input of the 8-Bit Adder to be set to

1 only if the previous Add or Add with Carry instruction resulted in a carry output from the adder.

Thus you use the Add with Carry instruction whenever you're adding multibyte numbers whether or

not the operation is actually needed. To properly code the 16-bit addition shown earlier, you use
“Code” “Data”

0000h: | 10h | Load 0000h: | ABh

20h | Add 2Ch
11h | Store <4— Low-order byte result
10h | Load 76h

22h | Add with Carry 23h

11h | Store <4— High-order byte result

FFh | Halt

This works correctly regardless of what the numbers are.

With these two new opcodes, we've greatly expanded the scope of the machine. No longer are we
restricted to adding 8-bit values. By repeated use of the Add with Carry instruction, we can now add
16-bit values, 24-bit values, 32-bit values, 40-bit values, and so on. Suppose we want to add the 32-
bit values 7A892BCDh and 65A872FFh. We need one Add instruction and three Add with Carry
instructions:

“Code” “Data”

0000h: | 10h | Load 0000h: | CDh
20h | Add FFh

11h | Store <— [owest-byte result

10k | Load 2Bh

22h | Add with Carry 72h

11h | Store <+— Next-highest-byte result

10h | Load 89h
22h | Add with Carry | A8h

Pk i Sisie 4— Next-highest—byte result

10k | Load 7Ah

22h | Add with Carry 65h

11h | Store <4— Highest-byte result

FFh | Halt

Of course, actually keying these numbers into memory isn't the most rewarding job around. Not only
do you have to use switches to represent binary numbers, but the numbers aren't stored in consecutive
addresses. For example, the number 7A892BCDh goes into addresses 0000h, 0003h, 0006h, and
0009h starting with the least-significant byte. To get the final result, you have to examine the values
located at addresses 0002h, 0005h, 0008h, and 000Bh.

Moreover, the current design of our automated adder doesn't allow the reuse of results in subsequent
calculations. Suppose we want to add three 8-bit numbers together and then subtract an 8-bit number
from that sum and store the result. That would require a Load instruction, two Add instructions, a
Subtract, and a Store. But what if we also wanted to subtract other numbers from that original sum?
That sum isn't accessible. We'd have to recalculate it every time we needed it.

The problem is that we've built an automated adder that addresses the Code memory and the Data
memory simultaneously and sequentially beginning at address 0000h. Each instruction in the Code
memory corresponds to a location in the Data memory at the same address. Once a Store instruction
causes something to be stored in the Data memory, that value can't later be loaded back into the
accumulator.

To fix this problem, I'm going to make a fundamental and excruciating change to the automated adder
that will at first seem insanely complicated. But in time, you'll see (I hope) that it opens a wide door
of flexibility.

Here we go. We currently have seven opcodes:
Operation Code
Load 10h

Store 11h

Add 20h

Subtract 21h
Add with Carry 22h
Subtract with Borrow | 23h

Halt FFh

Each of these codes occupies 1 byte in memory. With the exception of the Halt code, I now want each
of these instructions to require 3 bytes of memory. The first byte will be the code itself, and the next 2
bytes will be a 16-bit memory location. For the Load instruction, that address indicates a location in
the Data RAM array that contains the byte to be loaded into the accumulator. For the Add, Subtract,
Add with Carry, and Subtract with Borrow instructions, that address indicates the location of the byte
that's to be added to or subtracted from the accumulator. For the Store instruction, the address
indicates where the contents of the accumulator are to be stored.

For example, just about the simplest chore that the current automated adder can do is add two
numbers together. To do this, you set up the Code and Data RAM arrays this way:

“Code™ “Pata™

0000h: | 10h | Load 0000h: | 4Ah
20h | Add B5h

11h | Store 4— Result

FFh | Hale

In the revised automated adder, each instruction (except Halt) requires 3 bytes:

“Code”

0000h: | 10h | Load byte at address 0000h into accumulator
00h
00h
0003h: | 20h | Add byte at address 0001h to accumulator
00h
01h

0006h: | 11h | Store contents of accumulator at address 0002h
00h
02h
0009h: | FFh | Halt

Each of the instruction codes (except Halt) is followed by 2 bytes that indicate a 16-bit address in the
Data RAM array. These three addresses happen to be 0000h, 0001h, and 0002h, but they could be

anything,

Earlier I showed how to add a pair of 16-bit numbers—specifically 76 ABh and 232 Ch—using the
Add and Add with Carry instructions. But we had to store the 2 low-order bytes of these numbers at
memory locations 0000h and 0001h, and the 2 high-order bytes at 0003h and 0004h. The result of the
addition was stored at 0002h and 0005h.

With this change, we can store the two numbers and the result in a more rational manner, and perhaps
in an area of memory that we've never used before:

“Data™
4000h: | 76h
ABh
4002h: | 23h
2Ch
4004h: <— High-order byte of result goes here
<— Low-order byte of result goes here

These six locations don't have to be all together like this. They can be scattered anywhere throughout
the whole 64-KB Data RAM array. To add these values at these memory locations, you must set up
the instructions in the Code RAM array, like this:

“Code” “Code”
11 Load byte at address _ Load byte at address
0000h: | 10h 4001h into accumulator 0009h: | 10h 4000h into accumulator
40h 40h
01h 00h

2 Add byte at address
0003h: | 20h 4003h to accumulator

40h 40h
03h 02h

0006h: | 11h Store contents of accumu- 000Fh: | 11k Store contents of accumulator

lator at address 4005h at address 4004h
40h 40h

05h 04h
0012h: | FFh | Halt

000Ch: | 21h Add with Carry the byte at

address 4002h to accumulator

Notice that the 2 low-order bytes located at addresses 4001h and 4003h are added first, with the
result stored at address 4005h. The 2 high-order bytes (at addresses 4000h and 4002h) are added
with the Add with Carry instruction, and the result is stored at address 4004h. And if we were to
remove the Halt instruction and add more instructions to the Code memory, a sub-sequent calculation
could later make use of the original numbers and the sum of them simply by referring to these memory
addresses.

The key to implementing this design is to have the data output of the Code RAM array go into three 8-
bit latches. Each of these latches stores one of the bytes of the 3-byte instruction. The first latch stores
the instruction code, the second latch stores the high-order byte of the address, and the third latch
stores the low-order address byte. The output of the second and third latches becomes the 16-bit
address of the Data RAM array:

8-Bit
j> Latch :> Code

Control —»|Clk
Panel

—| @ Control

16-Bit - .y 2.Bir Panel
o Add] =

Cournter S GAK xS DO E> Latch [

—»|Clk RAM . @

:”;> Addr
4Kl
»
—-

i

o1 RAM PO »>"Dara”

_—> 8-Bir f— W
Latch

{1k

The process of retrieving an instruction from memory is known as the instruction fetch. In our
machine, each instruction is 3 bytes in length, and it's retrieved from memory 1 byte at a time; the
instruction fetch requires three cycles of the Clock signal. The entire instruction cycle requires a
fourth cycle of the Clock signal. These changes certainly complicate the control signals.

The machine is said to execute an instruction when it does a series of actions in response to the
instruction code. But it's not as if the machine is alive or anything. It's not analyzing the machine code
and deciding what to do. Each machine code is just triggering various control signals in a unique way
that causes the machine to do various things.

Notice that by making this machine more versatile, we've also slowed it down. Using the same
oscillator, it adds numbers at only one-fourth the speed of the first automated adder I showed in this
chapter. This is the result of an engineering principle known as TANSTAAFL (pronounced tans
toffle), which means "There Ain't No Such Thing As A Free Lunch." Usually, whenever you make a
machine better in one way, something else tends to suffer as a result.

If you were actually building such a machine out of relays, the bulk of the circuit would obviously be
the two 64-KB RAM arrays. Indeed, much earlier you might have skimped on these components and
decided that initially you would need only 1 KB of memory. If you made sure you stored everything in
addresses 0000h through 03FFh, using less memory than 64 KB would work out just fine.

Still, however, you probably weren't thrilled that you needed two RAM arrays. And in fact, you don't.
I originally introduced two RAM arrays—one for code and one for data—so that the architecture of
the automated adder would be as clear and simple as possible. But now that we've decided to make

each instruction 3 bytes long—with the second and third bytes indicating an address where the data is
located—it's no longer necessary to have two separate RAM arrays. Both code and data can be
stored in the same RAM array.

To accomplish this, we need to have a 2-to-1 Selector to determine how the RAM array is addressed.
Usually, the address is the 16-bit counter, as before. The RAM Data Out is still connected to three
latches that latch the instruction code and the 2 address bytes that accompany each instruction. But the
16-bit address is the second input to the 2-to-1 Selector. After the address is latched, this selector
allows the latched address to be the address input to the RAM array:

H> “Data”

P 5B >co

Control Clk
Panel *

—={ Clr

16-Bit
Counter E> @

—=| Cllc : :
2-to-1 Add = ; 8-Bit
Selector E> s 64Kx8 DOE 3> Latch .
i oDl RAM
16 » Clk
—
Sel * 15

! 8-Bit
—_h> Latch -

Cllk

We've made a lot of progress. Now it's possible to enter the instructions and the data in a single RAM
array. For example, the diagram on the next page shows how to add two 8-bit numbers together and

subtract a third.

0000h: | 10h | Load byte ar address 0010h into accumulartor
00h
10h

20h | Add bvte at address 0011h to accumulator

(00h
11h

21h | Subtract byte at address 0012h from accumulator

00h
12h
11h | Store byte in accumulator at address 0013h
00h
13h
000Ch: | FFh | Halt
0010h: | 45h
A9%h
8Eh

<— Final result goes here

As usual, the instructions begin at 0000h because that's where the counter starts accessing the RAM
array after it has been reset. The final Halt instruction is stored at address 000Ch. We could have
stored the three numbers and the results anywhere in the RAM array (except in the first 13 bytes, of
course, because those memory locations are occupied by instructions), but we chose to store the data
starting at address 0010h.

Now suppose you discover that you need to add two more numbers to that result. Well, you can
replace all the instructions you just entered with some new instructions, but maybe you don't want to
do that. Maybe you'd prefer to just continue with the new instructions starting at the end of these
instructions, first replacing the Halt instruction with a new Load instruction at address 000Ch. But
you also need two new Add instructions, a Store instruction, and a new Halt instruction. Your only
problem is that you have some data stored at address 0010h. You have to move that data someplace at
a higher memory address. And you then have to change the instructions that refer to those memory
instructions.

Hmmm, you think. Maybe combining Code and Data into a single RAM array wasn't such a hot idea
after all. But I assure you, a problem such as this would have come up sooner or later. So let's solve
it. In this case, maybe what you'd like to do is enter the new instructions beginning at address 0020h
and the new data at address 0030h:

0020h: | 10h | Load byte at address 0013h into accumulator

20h | Add byte at address 0030h to accumulator

20h | Add byte at address 0031h to accumulator

11h | Store byte in accumulator at address 0032h
00h
32h
FFh | Halt

0030h: | 43h
2Fh

— Final result goes here

Notice that the first Load instruction refers to the memory location 0013h, which is where the result
of the first calculation was stored.

So now we have some instructions starting at address 0000h, some data starting at 0010h, some more
instructions at 0020h, and some more data at 0030h. We want to let the automated adding machine
start at 0000h and execute all the instructions.

We know we must remove that Halt instruction at address 000Ch, and by remove I really mean
replace it with something else. But is that sufficient? The problem is that whatever we replace the
Halt instruction with is going to be interpreted as an instruction byte. And so will the bytes stored
every 3 bytes after that—at 000Fh, and 0012h, and 0015h, and 0018h, and 001Bh, and 001Eh. What if
one of these bytes just happens to be an 11h? That's a Store instruction. And what if the 2 bytes
following that Store instruction happened to refer to address 0023h? That would cause the machine to
write the contents of the accumulator to that address. But that address contains something important
already! And even if nothing like this happened, the next instruction byte that the adder retrieves from
memory after the one at 001Eh will be at address 0021h, not 0020h, which is where our next real
instruction happens to be.

Are we all in agreement that we can't just remove the Halt instruction at address 000Ch and hope for
the best?

But what we can replace it with is a new instruction called Jump. Let's add that to our repertoire.

Operation Code

Load 10h

Store 11h
Add 20h
Subtract 21h
Add with Carry 22h

Subtract with Borrow | 23h
Jump 30h

Halt FFh

Normally, this automated adder addresses the RAM array sequentially. A Jump instruction causes the
machine to alter that pattern. Instead, it begins addressing the RAM array at a different specified
address. Such an instruction is sometimes also called a Branch instruction, or Goto, as in "go to
another place."”

In the preceding example, we can replace the Halt instruction at address 000Ch with a Jump
instruction:

000Ch:| 30h [Jump to instruction at address 0020h

00h
20h

The 30h byte is the code for a Jump instruction. The 16-bit address that follows indicates the address
of the next instruction that the automated adder is to read.

So in the preceding example, the automated adder begins at 0000h, as usual, and does a Load
instruction, an Add, a Subtract, and a Store. It then does the Jump instruction and continues at address
0020h with a Load, two Add instructions, a Store, and finally Halt.

The Jump instruction affects the 16-bit counter. Whenever the automated adder encounters a Jump
instruction, the counter must somehow be forced to output that new address that follows the Jump
instruction code. This is implemented by using the Preset and Clear inputs of the edge-triggered D-
type flip-flops that make up the 16-bit counter:

Pre

D Ql—

pClk QpF—

You'll recall that the Preset and Clear inputs should both be 0 for normal operation. But if Preset is 1,
Q becomes 1. And if Clear is 1, Q becomes 0.

If you want to load a single flip-flop with a new value (which I'll call A for address), you can wire it

like this:

Set It
N
A—e o W
Pre
—D Ql—
—>Clk g —
Clr
L
K
Reset

Normally the Set It signal is 0. In that case, the Preset input to the flip-flop is 0. The Clear input is
also 0 unless the Reset signal is 1. This allows the flip-flop to be cleared independently of the Set It
signal. When the Set It signal is 1, the Preset input will be 1 and the Clear input will be 0 if A is 1. If
A is 0, the Preset input will be 0 and the Clear input will be 1. This means that Q will be set to the
value of A.

We need one of these for each bit of the 16-bit counter. Once loaded with a particular value, the
counter will continue counting from that value on.

Otherwise, the changes aren't severe. The 16-bit address that's latched from the RAM array is an
input to both the 2-to-1 Selector (which allows this address to be an address input to the RAM array)
and the 16-bit counter for the Set It function:

h> “Data”

e

Ser It Clk
Control
- * Panel +
Reset —{ Clr
1a-Bit
Counter Iﬁ_> @
—| C L)
2-io-1 = R — L 8-Bit =
7% Selector E> e DOE :h> Latch .
16 4K xS
R »pl RaM
1 &5 1,
— Clk
Sel +

i

$}< R-Bit
Latch

Obviously, we must ensure that the Set It signal is 1 only if the instruction code is 30h and the address
has been latched.

The Jump instruction is certainly useful. But it's not nearly as useful as an instruction that jumps
sometimes but not all the time. Such an instruction is known as a conditional jump, and perhaps the
best way to show how useful such an instruction can be is to pose a question: How can we persuade
our automated adder to multiply two 8-bit numbers? For example, how do we get the result for
something as simple as A7h times 1Ch?

Easy, right? The result of multiplying two 8-bit values is a 16-bit product. For convenience, all three
numbers involved in the multiplication are expressed as 16-bit values. The first job is to decide
where you want to put the numbers and the product:

1000h: | 00h | 16-bit multiplier
A7h
1002h: | 00h | 16-bit multiplicand
1Ch
1004h: | 00h (== 16-bit product goes here

(00h | and here

Everyone knows that multiplying A7h and 1Ch (which is 28 in decimal) is the same as 28 additions of

A7h. So the 16-bit location at addresses 1004h and 1005h will actually be an accumulated
summation. Here's the code for adding A7h to that location once:

0000h: | 10 | Load 1w}-'1tf: at 1005h 0009h: | 10h I.t_]:u..l l?}-"ti: at 1004h
into accumulator mto accumulator
10h 10h
05h (4h
fi03h:| o | oo RreRnit0sn 000Ch: | 22h | Add with Carry byte at
to accumulator 1000h to accumulator
10h 10h
01h (00h
0006h: | 11n | Store contents of 000Fh: | 111 | Store contents of

accumulator at 1005h

accumulator at 1004h

0012h:

At the completion of these six instructions, the 16-bit value at memory locations 1004h and 1005h
will equal A7h times 1. Therefore, these six instructions have to be repeated 27 more times in order
for that 16-bit value to equal A7h times 1Ch. You can achieve this by typing in these six instructions
27 more times beginning at address 0012h. Or you can put a Halt instruction at 0012h and press the
Reset button 28 times to get the final answer.

Of course, neither of these two options is ideal. They both require that you do something—type in a
bunch of instructions or press the Reset button—a number of times that's proportional to one of the
numbers being multiplied. Surely you wouldn't want to generalize this process for 16-bit values that
you want to multiply.

But what if you put a Jump instruction at 0012h? This instruction causes the counter to start from
0000h again:

(0012h: | 30h | Jump to the instruction at 0000h
(00h
00h

This certainly does the trick (sort of). The first time through, the 16-bit value at memory locations
1004h and 1005h will equal A7h times 1. Then the Jump instruction will go back up to the top. At the
end of the second time through, the 16-bit result will equal A7h times 2. Eventually, it will equal A7h
times 1Ch, but there's no stopping it. It just keeps going and going and going.

What we want is a Jump instruction that starts the process over again only as many times as are
needed. That's the conditional jump. And it's really not that hard to implement. The first thing we'll
want to add is a 1-bit latch similar to the Carry latch. This will be called the Zero latch because it

will latch a value of 1 only if the output of the 8-Bit Adder is all zeros:

8-Bit Adder

Clr

Dl Do
> Clk |

Zero
ﬂag

The output of that 8-bit NOR gate is 1 only if all the inputs are 0. Like the Clock input of the Carry
latch, the Clock input of the Zero latch latches a value only when an Add, Subtract, Add with Carry,
or Subtract with Borrow instruction is being performed. This latched value is known as the Zero
flag. Watch out because it could seem as if it's working backward: The Zero flag is 1 if the output of
the adder is all zeros, and the Zero flag is O if output of the adder is not all zeros.

With the Carry latch and the Zero latch, we can expand our repertoire of instructions by four:

Operation Code
Load 10h
Store 11h
Add 20h
Subtract 21h
Add with Carry 22h

Subtract with Borrow | 23h

Jump 30h
Jump If Zero 31h
Jump If Carry 32h

Jump If Not Zero 33h
Jump If Not Carry | 34h

Halt FFh

For example, the Jump If Not Zero instruction jumps to the specified address only if the output of the
Zero latch is 0. In other words, there will be no jump if the last Add, Subtract, Add with Carry, or
Subtract with Borrow instruction resulted in 0. Implementing this design is just an add-on to the
control signals that implement the regular Jump command: If the instruction is Jump If Not Zero, the
Set It signal on the 16-bit counter is triggered only if the Zero flag is 0.

Now all that's necessary to make the code shown above multiply two numbers are the following
instructions starting at address 0012h:

0012h: | 10h | Load byte at address 1003h into accumulator
10h
(03h

0015h: | 20h | Add byte at address 001Eh to accumulator

00h

1Eh

0018h: | 11h | Store byte in accumulator at address 1003h
10h
03h

001Bh: | 33h | Jump to 0000h if the zero flag is not 1

00k
00h
001Eh: | FFh | Halt

The first time through, the 16-bit location at 0004h and 0005h contains A7h times 1, as we've already
established. The instructions here load the byte from location 1003h into the accumulator. This is
1Ch. This byte is added to the value at location 001Eh. This happens to be the Halt instruction, but of
course it's also a valid number. Adding FFh to 1Ch is the same as subtracting 1 from 1Ch, so the
result is 1Bh. This isn't 0, so the Zero flag is 0. The 1Bh byte is stored back at address 1003h. Next is
a Jump If Not Zero instruction. The Zero flag isn't set to 1, so the jump occurs. The next instruction is
the one located at address 0000h.

Keep in mind that the Store instruction doesn't affect the Zero flag. The Zero flag is affected only by
the Add, Subtract, Add with Carry, or Subtract with Borrow instruction, so it will remain the same
value that was set the last time one of these instructions occurred.

The second time through, the 16-bit location at 1004h and 1005h will contain the value A7h times 2.
The value 1Bh is added to FFh to get the result 1Ah. That's not 0, so back to the top.

On the twenty-eighth time through, the 16-bit location at 1004h and 1005h will contain the value A7h
times 1Ch. At location 1003h will be the value 1. This will be added to FFh and the result will be
zero. The Zero flag will be set! So the Jump If Not Zero instruction will not jump back to 0000h.
Instead, the next instruction is a Halt. We're done.

I now assert that at long last we've assembled a piece of hardware that we can honestly call a
computer. To be sure, it's a primitive computer, but it's a computer nonetheless. What makes the
difference is the conditional jump. Controlled repetition or looping is what separates computers from
calculators. I've just demonstrated how a conditional jump instruction allows this machine to multiply
two numbers. In a similar way, it can also divide two numbers. Moreover, it's not limited to 8-bit
values. It can add, subtract, multiply, and divide 16-bit, 24-bit, 32-bit, or even larger numbers. And if
it can do this, it can calculate square roots, logarithms, and trigonometric functions.

Now that we've assembled a computer, we can start using words that sound like we're talking about
computers.

The particular computer that we've assembled is classified as a digital computer because it works
with discrete numbers. At one time, there were also analog computers that are now largely extinct.
(Digital data is discrete data—data that has certain specific distinct values. Analog information is
continuous and varies throughout an entire range.)

A digital computer has four main parts: a processor, memory, at least one input device, and least one
output device. In our machine, the memory is the 64-KB RAM array. The input and output devices
are the rows of switches and lightbulbs on the RAM array control panel. These switches and
lightbulbs let us (the human beings in this show) put numbers into memory and examine the results.

The processor is everything else. A processor is also called a central processing unit, or CPU. More
casually, the processor is sometimes called the brain of the computer, but I'd like to avoid using such
terminology, mainly because what we designed in this chapter hardly seems anything like a brain to
me. (The word microprocessor is very common these days. A microprocessor is just a processor that
—through use of technology I'll describe in Chapter 18—is very small. What we've built out of relays
in this chapter could hardly be defined as a micro anything!)

The processor that we've built is an 8-bit processor. The accumulator is 8 bits wide and most of the
data paths are 8 bits wide. The only 16-bit data path is the address to the RAM array. If we used 8
bits for that, we'd be limited to 256 bytes of memory rather than 65,536 bytes, and that would be quite
restrictive.

A processor has several components. I've already identified the accumulator, which is simply a latch
that holds a number inside the processor. In our computer, the 8-bit inverter and the 8-Bit Adder
together can be termed the Arithmetic Logic Unit, or ALU. Our ALU performs only arithmetic,
specifically addition and subtraction. In slightly more sophisticated computers (as we'll see), the
ALU can also perform logical functions, such as AND, OR, and XOR. The 16-bit counter is called a
Program Counter.

The computer that we've built is constructed from relays, wires, switches, and lightbulbs. All of these
things are hardware. In contrast, the instructions and other numbers that we enter into memory are

1 n

called software. It's "soft" because it can be changed much more easily than the hardware can.

When we speak of computers, the word software is almost synonymous with the term computer
program, or, more simply, program. Writing software is known as computer programming.
Computer programming is what I was doing when I determined the series of instructions that would
allow our computer to multiply two numbers together.

Generally, in computer programs, we can distinquish between code (which refers to the instructions
themselves) and data, which are the numbers that the code manipulates. Sometimes the distinction
isn't so obvious, as when the Halt instruction served double duty as the number —1.

Computer programming is sometimes also referred to as writing code, or coding, as in, "I spent my
vacation coding" or "I was up until seven this morning banging out some code." Sometimes computer
programmers are known as coders, although some might consider this a derogatory term. Such
programmers might prefer to be called software engineers.

The operation codes that a processor responds to (such as 10h and 11h for Load and Store) are
known as machine codes, or machine language. The term language is used because it's akin to a
spoken or written human language in that a machine "understands" it and responds to it.

I've been referring to the instructions that our machine carries out by rather long phrases, such as Add
with Carry. Commonly, machine codes are assigned short mnemonics that are written with uppercase
letters.

These mnemonics can be as short as 2 or 3 letters. Here's a set of possible mnemonics for the
machine codes that our computer recognizes:

Operation Code | Mnemonic
Load 10h |LOD

Store 11h | STO

Add 20h ADD
Subtract 21h |SUB

Add with Carry 22h |ADC

Subtract with Borrow | 23h SBB

Jump 30h | JMP
Jump If Zero 3th |JZ
Jump If Carry 32h |JC

Jump If Not Zero 33h |INZ
Jump If Not Carry |34h | JNC

Halt FFh | HLT

These mnemonics are particularly useful when combined with a couple of other shortcuts. For
example, instead of saying something long-winded like, "Load byte at address 1003h into
accumulator,”" we can instead write the statement:

LOD A, [1603h]
The A and the [1003] that appear to the right of the mnemonic are called arguments that indicate
what's going on with this particular Load instruction. The arguments are written with a destination on

the left (the A stands for accumulator) and a source on the right. The brackets indicate that the
accumulator should be loaded not with the value 1003h but with the value stored in memory at

address 1003h.
Similarly, the instruction "Add byte at address 001Eh to accumulator" can be shortened to
ADD A, [001Eh]

and "Store contents of accumulator at address 1003h" is
STO [1003h],A
Notice that the destination (a memory location for the Store instruction) is still on the left and the

source is on the right. The contents of the accumulator must be stored in memory at address 1003h.
The wordy "Jump to 0000h if the Zero flag is not 1" is more concisely written as

JNZ 00006h

The brackets aren't used in this instruction because the instruction jumps to address 0000h, not to the
value that might be stored at address 0000h.

It's convenient to write these instructions in this type of shorthand because the instructions can be
listed sequentially in a readable way that doesn't require us to draw boxes of memory locations. To
indicate that a particular instruction is stored at a particular address, you can use the hexadecimal
address followed by a colon, such as

0000h: LOD A, [1005h]

And here's how we can indicate some data stored at a particular address:

1000h: 00h, A7h
1002h: 00h, 1Ch
1004h: ©0h, 00h

The 2 bytes separated by commas indicate that the first byte is stored at the address on the left and the
second byte is stored at the next address. These three lines are equivalent to

1000h: @0h, A7h, ©6h, 1Ch, 00h, 00h

So the entire multiplication program can be written as a series of statements like this:

0000h: LOD A, [1005h]
ADD A, [1001h]
STO [1005h],A

LOD A, [1004h]
ADC A, [1000h]
STO [1004h],A

LOD A, [1003h]
ADD A, [001Eh]
STO [1003h],A

JNZ 0000h
QO1Eh: HLT
1000h: 00h, A7h
1002h: 00h, 1Ch
1004h: 00h, 00h

The judicious use of blank lines and other white space is simply to make the whole program more
readable for human beings like you and me.

It's better not to use actual numeric addresses when writing code because they can change. For
example, if you decided to store the numbers at memory locations 2000h through 20005h, you'd need
to rewrite many of the statements as well. It's better to use labels to refer to locations in memory.
These labels are simply words, or they look almost like words, like this:

BEGIN: LOD A, [RESULT + 1]

ADD A, [NUM1 + 1]
STO [RESULT + 1],A

LOD A, [RESULT]
ADC A, [NUM1]
STO [RESULT],A

LOD A, [NUM2 + 1]

ADD A, [NEG1]
STO [NUM2 + 1],A

JNZ BEGIN
NEG1: HLT
NUM1: 00h, A7h
NUM2: 00h, 1Ch

RESULT: 00h, 06h

Notice that the labels NUM1, NUM2, and RESULT all refer to memory locations where 2 bytes are
stored. In these statements, the labels NUM1 + 1, NUM?2 + 1, and RESULT + 1 refer to the second
byte after the particular label. Notice the NEG1 (negative one) label on the HLT instruction.

Finally, if there's a chance that you'll forget what these statements do, you can add little comments,
which are in English and are separated from the actual statements by a semicolon:

BEGIN: LOD A, [RESULT + 1]
ADD A, [NUM1 + 1] ; Add low-order byte
STO [RESULT + 1],A

LOD A, [RESULT]
ADC A, [NUM1] ; Add high-order byte
STO [RESULT],A

LOD A, [NUM2 + 1]
ADD A, [NEG1] ; Decrement second number
STO [NUM2 + 1],A

JNZ BEGIN
NEG1: HLT

NUM1: 00h, A7h
NUM2: 00h, 1Ch

RESULT: 00h, 00h

I'm showing you here a type of computer programming language known as assembly language. It's
something of a compromise between the naked numbers of machine code and the wordiness of our
English descriptions of the instructions, coupled with symbolic representations of memory addresses.
People are sometimes confused about the difference between machine code and assembly language
because they're really just two different ways of looking at the same thing. Every statement in
assembly language corresponds to certain specific bytes of machine code.

If you were to write a program for the computer that we've built in this chapter, you'd probably want
to write it first (on paper) in assembly language. Then, once you were satisfied that it was mostly
correct and ready to be tested, you would hand assemble it: This means that you would manually
convert each assembly-language statement to machine code, still on paper. At that point, you can use
the switches to enter the machine code into the RAM array and run the program, which means to let
the machine execute the instructions.

When you're learning the concepts of computer programming, it's never too early to get acquainted
with bugs. When you're coding—particularly in machine code—it's very easy to make mistakes. It's
bad enough to enter a number incorrectly, but what happens when you enter an instruction code
incorrectly? If you enter a 11h (the Store instruction) when you really meant to enter a 10h (the Load

instruction), not only will the machine not load in the number it's supposed to, but that number will be
overwritten by whatever happens to be in the accumulator.

Some bugs can have unpredictable results. Suppose you use the Jump instruction to jump to a location
that doesn't contain a valid instruction code. Or suppose you accidentally use the Store instruction to
write over instructions. Anything can happen (and often does).

There's even a bug in my multiplication program. If you run it twice, the second time through it will
multiply A7h by 256 and add that result to the result already calculated. This is because after you run
the program once, the number at address 1003h will be 0. When you run it the second time, FFh will
be added to that value. The result won't be 0, so the program will keep running until it is.

We've seen that this machine can do multiplication, and in a similar way it can also do division. I've
also asserted that this machine can use these primitive functions to do square roots, logarithms, and
trigonometric functions. All a machine needs is the hardware to add and subtract and some way to use
conditional jump instructions to execute the proper code. As a programmer might say, "I can do the
rest in software."

Of course, this software might be quite complex. Many whole books have been written that describe
the algorithms that programmers use to solve specific problems. We're not yet ready for that. We've
been thinking about whole numbers and haven't taken a crack at how to represent decimal fractions in
the computer. I'll get to that in Chapter 23.

I've mentioned several times that all the hardware to build these devices was available over a
hundred years ago. But it's unlikely that the computer shown in this chapter could have been built at
that time. Many of the concepts implicit in its design weren't apparent when relay computers were
first built in the mid-1930s and only started to be understood around 1945 or so. Until that time, for
example, people were still trying to build computers that internally used decimal numbers rather than
binary. And computer programs weren't always stored in memory but instead were sometimes coded
on paper tape. In particular, in the early days of computers, memory was expensive and bulky.
Building a 64-KB RAM array from five million telegraph relays would have been as absurd one
hundred years ago as it is now.

It's time to put what we've done in perspective and to review the history of calculation and computing
devices and machines. Perhaps we shall find that we don't have to build this elaborate relay computer
after all. As I mentioned in Chapter 12, relays were eventually replaced with electronic devices such
as vacuum tubes and transistors. Perhaps we shall also find that someone else has built something

that's equivalent to the processor and the memory we designed but that can fit in the palm of your
hand.

Chapter 18. From Abaci to Chips

Throughout recorded history, people have invented numerous clever gadgets and machines in a
universal quest to make mathematical calculations just a little bit easier. While the human species
seemingly has an innate numerical ability, we also require frequent assistance. We can often conceive
of problems that we can't easily solve ourselves.

The development of number systems can be seen as an early tool to help people keep track of
commodities and property. Many cultures, including the ancient Greeks and native Americans, seem
to have counted with the assistance also of pebbles or kernels of grain. In Europe, this led to counting
boards, and in the Middle East to the familiar frame-and-bead abacus:

;/ _._ T g _ B TR L T ."'-_'.' _

Although commonly associated with Asian cultures, the abacus seems to have been introduced to
China by traders around 1200 CE.

No one has ever really enjoyed multiplication and division, but few people have done anything about
it. The Scottish mathematician John Napier (1550-1617) was one of those few. He invented
logarithms for the specific purpose of simplifying these operations. The product of two numbers is
simply the sum of their logarithms. So if you need to multiply two numbers, you look them up in a
table of logarithms, add the numbers from the table, and then use the table in reverse to find the actual
product.

The construction of tables of logarithms occupied some of the greatest minds of the subsequent 400
years while others designed little gadgets to use in place of these tables. The slide rule has a long
history beginning with a logarithmic scale made by Edmund Gunter (1581-1626) and refined by
William Oughtred (1574—-1660). The history of the slide rule effectively ended in 1976, when the
Keuffel & Esser Company presented its last manufactured slide rule to the Smithsonian Institution in
Washington D.C. The cause of death was the hand-held calculator.

Napier also invented another multiplication aid, which is composed of strips of numbers usually
inscribed on bone, horn, or ivory and hence referred to as Napier's Bones. The earliest mechanical
calculator was a somewhat automated version of Napier's bones built around 1620 by Wilhelm
Schickard (1592—-1635). Other calculators based on interlocking wheels, gears, and levers are almost
as old. Two of the more significant builders of mechanical calculators were the mathematicians and
philosophers Blaise Pascal (1623-1662) and Gottfried Wilhelm von Leibniz (1646-1716).

You'll no doubt recall what a nuisance the carry bit was in both the original 8-Bit Adder and the
computer that (among other things) automated the addition of numbers wider than 8 bits. The carry

seems at first to be just a little quirk of addition, but in adding machines, the carry is really the central
problem. If you've designed an adding machine that does everything except the carry, you're nowhere
close to being finished!

How successfully the carry is dealt with is a key to the evaluation of old calculating machines. For
example, Pascal's design of the carry mechanism prohibited the machine from subtracting. To
subtract, the nines' complement had to be added the way that I demonstrated in Chapter 13. Successful
mechanical calculators that real people could use weren't available until the late nineteenth century.

One curious invention that was to have a later influence on the history of computing—as well as a
profound influence on the textile industry—was an automated loom developed by Joseph Marie
Jacquard (1752-1834). The Jacquard loom (circa 1801) used metal cards with holes punched in them
(much like those of a player piano) to control the weaving of patterns in fabrics. Jacquard's own tour
de force was a self-portrait in black and white silk that required about 10,000 cards.

In the eighteenth century (and indeed up to the 1940s), a computer was a person who calculated
numbers for hire. Tables of logarithms were always needed, and trigonometric tables were essential
for nautical navigation using the stars and planets. If you wanted to publish a new set of tables, you
would hire a bunch of computers, set them to work, and then assemble all the results. Errors could
creep in at any stage of this process, of course, from the initial calculation to setting up the type to
print the final pages.

The desire to eliminate errors from mathematical tables motivated the work of Charles Babbage
(1791-1871), a British mathematician and economist who was almost an exact contemporary of
Samuel Morse.

At the time, mathematical tables (of logarithms, for example) were not created by calculating an
actual logarithm for each and every entry in the table. This would have taken far too long. Instead, the
logarithms were calculated for select numbers, and then numbers in between were calculated by
interpolation, using what are called differences in relatively simple calculations.

Beginning about 1820, Babbage believed that he could design and build a machine that would
automate the process of constructing a table, even to the point of setting up type for printing. This
would eliminate errors. He conceived the Difference Engine, and basically it was a big mechanical
adding machine. Multidigit decimal numbers were represented by geared wheels that could be in any

of 10 positions. Negatives were handled using the ten's complement. Despite some early models that
showed Babbage's design to be sound and some grants from the British government (never enough, of
course), the Difference Engine was never completed. Babbage abandoned work on it in 1833.

By that time, however, Babbage had an even better idea. It was called the Analytical Engine, and
through repeated design and redesign (with a few small models and parts of it actually built) it
consumed Babbage off and on until his death. The Analytical Engine is the closest thing to a computer
that the nineteenth century has to offer. In Babbage's design, it had a store (comparable to our concept
of memory) and a mill (the arithmetic unit). Multiplication could be handled by repeated addition, and
division by repeated subtraction.

What's most intriguing about the Analytical Engine is that it could be programmed using cards that
were adapted from the cards used in the Jacquard pattern-weaving loom. As Augusta Ada Byron,
Countess of Lovelace (1815-1852), put it (in notes to her translation of an article written by an Italian
mathematician about Babbage's Analytical Engine), "We may say that the Analytical Engine weaves
algebraical patterns just as the Jacquard-loom weaves flowers and leaves."

Babbage seems to be the first person to understand the importance of a conditional jump in
computers. Here's Ada Byron again: "A cycle of operations, then, must be understood to signify any
set of operations which is repeated more than once. It is equally a cycle, whether it be repeated
twice only, or an indefinite number of times; for it is the fact of a repetition occurring at all that
constitutes it such. In many cases of analysis there is a recurring group of one or more cycles; that is,
a cycle of cycle, or a cycle of cycles."

Although a difference engine was eventually built by father-and-son team Georg and Edvard Scheutz
in 1853, Babbage's engines were forgotten for many years, only to be resurrected in the 1930s when
people began searching for the roots of twentieth century computing. By that time, everything Babbage
had done had already been surpassed by later technology, and he had little to offer the twentieth
century computer engineer except a precocious vision of automation.

Another milestone in the history of computing resulted from Article I, Section 2, of the Constitution of
the United States of America. Among other things, this section calls for a census to be taken every ten
years. By the time of the 1880 census, information was accumulated on age, sex, and national origin.
The data amassed took about seven years to process.

Fearing that the 1890 census would take longer than a decade to process, the Census Office explored
the possibility of automating the system and chose machinery developed by Herman Hollerith (1860—
1929), who had worked as a statistician for the 1880 census.

Hollerith's plan involved manila punch cards 6 % x 3 % inches in size. (It's unlikely that Hollerith
knew about Charles Babbage's use of cards to program his Analytical Engine, but he was almost
certainly familiar with the use of cards in the Jacquard loom.) The holes in these cards were
organized into 24 columns of 12 positions each, for a total of 288 positions. These positions
represented certain characteristics of a person being tallied in the census. The census taker indicated
these characteristics by punching %-inch square holes into the appropriate positions on the card.

This book has probably so accustomed you to thinking in terms of binary codes that you might
immediately assume that a card with 288 possible punches is capable of storing 288 bits of
information. But the cards weren't used that way.

For example, a census card used in a purely binary system would have one position for sex. It would
be either punched for male or unpunched for female (or the other way around). But Hollerith's cards
had two positions for sex. One position was punched for male, the other for female. Likewise, the
census taker indicated a subject's age by making two punches. The first punch designated a five-year
age range: 0 through 4, 5 through 9, 10 through 14, and so forth. The second punch was in one of five
positions to indicate the precise age within that range. Coding the age required a total of 28 positions
on the card. A pure binary system would require just 7 positions to code any age from 0 through 127.

We should forgive Hollerith for not implementing a binary system for recording census information:
Converting an age to binary numbers was a little too much to ask of the 1890 census takers. There's
also a practical reason why a system of punched cards can't be entirely binary. A binary system
would produce cases in which all the holes (or nearly all) were punched, rendering the card very
fragile and structurally unsound.

Census data is collected so that it can be counted, or tabulated. You want to know how many people
live in each census district, of course, but it's also interesting to obtain information about the age
distribution of the population. For this, Hollerith created a tabulating machine that combined hand
operation and automation. An operator pressed a board containing 288 spring-loaded pins on each
card. Pins corresponding to punched holes in the cards came into contact with a pool of mercury that
completed an electrical circuit that triggered an electromagnet that incremented a decimal counter.

Hollerith also used electromagnets in a machine that sorted cards. For example, you might want to
accumulate separate age statistics for each occupation that you've tallied. You first need to sort the
cards by occupation and then accumulate the age statistics separately for each. The sorting machine
used the same hand press as the tabulator, but the sorter had electromagnets to open a hatch to one of
26 separate compartments. The operator dropped the card into the compartment and manually closed
the hatch.

This experiment in automating the 1890 census was a resounding success. All told, over 62 million
cards were processed. They contained twice as much data as was accumulated in the 1880 census,
and the data was processed in about one-third the time. Hollerith and his inventions became known

around the world. In 1895, he even traveled to Moscow and succeeded in selling his equipment for
use in the very first Russian census, which occurred in 1897.

Herman Hollerith also set in motion a long trail of events. In 1896, he founded the Tabulating
Machine Company to lease and sell the punch-card equipment. By 1911, with the help of a couple of
mergers, it had become the Computing-Tabulating-Recording Company, or C-T-R. By 1915, the
president of C-T-R was Thomas J. Watson (1874-1956), who in 1924 changed the name of the
company to International Business Machines Corporation, or IBM.

By 1928, the original 1890 census cards had evolved into the famous "do not spindle, fold, or
mutilate" IBM cards, with 80 columns and 12 rows. They remained in active use for over 50 years,
and even in their later years were sometimes referred to as Hollerith cards. I'll describe the legacy of
these cards more in Chapters Chapter 20, Chapter 21, and Chapter 24.

Before we move on to the twentieth century, let's not leave the nineteenth century with too warped a
view about that era. For obvious reasons, in this book I've been focusing most closely on inventions
that are digital in nature. These include the telegraph, Braille, Babbage's engines, and the Hollerith
card. When working with digital concepts and devices, you might find it easy to think that the whole
world must be digital. But the nineteenth century is characterized more by discoveries and inventions
that were decidedly not digital. Indeed, very little of the natural world that we experience through our
senses is digital. It's instead mostly a continuum that can't be so easily quantified.

Although Hollerith used relays in his card tabulators and sorters, people didn't really begin building
computers using relays—electromechanical computers, as they were eventually called—until the mid
1930s. The relays used in these machines were generally not telegraph relays, but instead were relays
developed for the telephone system to control the routing of calls.

Those early relay computers were not like the relay computer that we built in the last chapter. (As
we'll see, I based the design of that computer on microprocessors from the 1970s.) In particular,
while it's obvious to us today that computers internally should use binary numbers, that wasn't always
the case.

Another difference between our relay computer and the early real ones is that nobody in the 1930s
was crazy enough to construct 524,288 bits of memory out of relays! The cost and space and power
requirements would have made so much memory impossible. The scant memory available was used
only for storing intermediate results. The programs themselves were on a physical medium such as a
paper tape with punched holes. Indeed, our process of putting code and data into memory is a more
modern concept.

Chronologically, the first relay computer seems to have been constructed by Conrad Zuse (1910-
1995), who as an engineering student in 1935 began building a machine in his parents' apartment in
Berlin. It used binary numbers but in the early versions used a mechanical memory scheme rather than
relays. Zuse punched holes in old 35mm movie film to program his computers.

In 1937, George Stibitz (1904—-1995) of Bell Telephone Laboratories took home a couple of
telephone relays and wired a 1-bit adder on his kitchen table that his wife later dubbed the K
Machine (K for kitchen). This experimentation led to Bell Labs' Complex Number Computer in 1939.

Meanwhile, Harvard graduate student Howard Aiken (1900—1973) needed some way to do lots of
repetitive calculations, and that led to a collaboration between Harvard and IBM that resulted in the
Automated Sequence Controlled Calculator (ASCC) eventually known as the Harvard Mark 1,

completed in 1943. This was the first digital computer that printed tables, thus finally realizing
Charles Babbage's dream. The Mark II was the largest relay-based machine, using 13,000 relays. The
Harvard Computation Laboratory headed by Aiken taught the first classes in computer science.

Relays weren't perfect devices for constructing computers. Because they were mechanical and
worked by bending pieces of metal, they could break after an extended workout. A relay could also
fail because of a piece of dirt or paper stuck between the contacts. In one famous incident in 1947, a
moth was extracted from a relay in the Harvard Mark II computer. Grace Murray Hopper (1906—
1992), who had joined Aiken's staff in 1944 and who would later become quite famous in the field of
computer programming languages, taped the moth to the computer logbook with the note "first actual
case of bug being found."

A possible replacement for the relay is the vacuum tube, which was developed by John Ambrose
Fleming (1849-1945) and Lee de Forest (1873-1961) in connection with radio. By the 1940s,
vacuum tubes had long been used to amplify telephones, and virtually every home had a console radio
set filled with glowing tubes that amplified radio signals to make them audible. Vacuum tubes can
also be wired—much like relays—into AND, OR, NAND, and NOR gates.

It doesn't matter whether gates are built from relays or vacuum tubes. Gates can always be assembled
into adders, selectors, decoders, flip-flops, and counters. Everything I explained about relay-based
components in the preceding chapters remains valid when the relays are replaced by vacuum tubes.

Vacuum tubes had their own problems, though. They were expensive, required a lot of electricity, and
generated a lot of heat. The big problem, however, was that they eventually burned out. This was a
fact of life that people lived with. Those who owned tube radios were accustomed to replacing tubes
periodically. The telephone system was designed with a lot of redundancy, so the loss of a tube now
and then was no big deal. (No one expects the telephone system to work flawlessly anyway.) When a
tube burns out in a computer, however, it might not be immediately detected. Moreover, a computer
uses so many vacuum tubes, that statistically they might be burning out every few minutes.

The big advantage of using vacuum tubes over relays is that tubes can switch in about a millionth of a
second—one microsecond. A vacuum tube changes state (switches on or off) a thousand times faster
than a relay, which at its very best only manages to switch in about 1 millisecond, a thousandth of a
second. Interestingly enough, the speed issue wasn't a major consideration in early computer
development because overall computing speed was linked to the speed that the machine read the
program from the paper or film tape. As long as computers were built in this way, it didn't matter how
much faster vacuum tubes were than relays.

But beginning in the early 1940s, vacuum tubes began supplanting relays in new computers. By 1945,
the transition was complete. While relay machines were known as electromechanical computers,
vacuum tubes were the basis of the first electronic computers.

In Great Britain, the Colossus computer (first operational in 1943) was dedicated to cracking the
German "Enigma" code-making machine. Contributing to this project (and to some later British
computer projects) was Alan M. Turing (1912—-1954), who is most famous these days for writing two
influential papers. The first, published in 1937, pioneered the concept of "computability," which is an
analysis of what computers can and can't do. He conceived of an abstract model of a computer that's
now known as the Turing Machine. The second famous paper Turing wrote was on the subject of
artificial intelligence. He introduced a test for machine intelligence that's now known as the Turing
Test.

At the Moore School of Electrical Engineering (University of Pennsylvania), J. Presper Eckert
(1919-1995) and John Mauchly (1907-1980) designed the ENIAC (Electronic Numerical Integrator
and Computer). It used 18,000 vacuum tubes and was completed in late 1945. In sheer tonnage (about
30), the ENIAC was the largest computer that was ever (and probably will ever be) made. By 1977,
you could buy a faster computer at Radio Shack. Eckert and Mauchly's attempt to patent the computer
was, however, thwarted by a competing claim of John V. Atanasoff (1903—1995), who earlier
designed an electronic computer that never worked quite right.

The ENIAC attracted the interest of mathematician John von Neumann (1903—-1957). Since 1930, the
Hungarian-born von Neumann (whose last name is pronounced noy mahn) had been living in the
United States. A flamboyant man who had a reputation for doing complex arithmetic in his head, von
Neumann was a mathematics professor at the Princeton Institute for Advanced Study, and he did
research in everything from quantum mechanics to the application of game theory to economics.

SRR

John von Neumann helped design the successor to the ENIAC, the EDVAC (Electronic Discrete
Variable Automatic Computer). Particularly in the 1946 paper "Preliminary Discussion of the Logical
Design of an Electronic Computing Instrument," coauthored with Arthur W. Burks and Herman H.
Goldstine, he described several features of a computer that made the EDVAC a considerable advance
over the ENIAC. The designers of the EDVAC felt that the computer should use binary numbers
internally. The ENIAC used decimal numbers. The computer should also have as much memory as
possible, and this memory should be used for storing both program code and data as the program was
being executed. (Again, this wasn't the case with the ENIAC. Programming the ENIAC was a matter
of throwing switches and plugging in cables.) These instructions should be sequential in memory and
addressed with a program counter but should also allow conditional jumps. This design came to be
known as the stored-program concept.

These design decisions were such an important evolutionary step that today we speak of von
Neumann architecture. The computer that we built in the last chapter was a classic von Neumann
machine. But with von Neumann architecture comes the von Neumann bottleneck. A von Neumann
machine generally spends a significant amount of time just fetching instructions from memory in
preparation for executing them. You'll recall that the final design of the Chapter 17 computer required
that three-quarters of the time it spent on each instruction be involved in the instruction fetch.

At the time of the EDVAGC, it wasn't cost effective to build a lot of memory out of vacuum tubes. Some

very odd solutions were proposed instead. One successful one was mercury delay line memory,
which used 5-foot tubes of mercury. At one end of the tube, little pulses were sent into the mercury
about 1 microsecond apart. These pulses took about a millisecond to reach the other end (where they
were detected like sound waves and routed back to the beginning), and hence each tube of mercury
could store about 1024 bits of information.

It wasn't until the mid-1950s that magnetic core memory was developed. Such memory consisted of
large arrays of little magnetized metal rings strung with wires. Each little ring could store a bit of
information. Long after core memory had been replaced by other technologies, it was common to hear
older programmers refer to the memory that the processor accessed as core.

John von Neumann wasn't the only person doing some major conceptual thinking about the nature of
computers in the 1940s.

Claude Shannon (born 1916) was another influential thinker. In Chapter 11, I discussed his 1938
master's thesis, which established the relationship between switches, relays, and Boolean algebra. In
1948, while working for Bell Telephone Laboratories, he published a paper in the Bell System
Technical Journal entitled "A Mathematical Theory of Communication” that not only introduced the
word bit in print but established a field of study today known as information theory. Information
theory is concerned with transmitting digital information in the presence of noise (which usually
prevents all the information from getting through) and how to compensate for that. In 1949, he wrote
the first article about programming a computer to play chess, and in 1952 he designed a mechanical
mouse controlled by relays that could learn its way around a maze. Shannon was also well known at
Bell Labs for riding a unicycle and juggling simultaneously.

Norbert Wiener (1894-1964), who earned his Ph.D. in mathematics from Harvard at the age of 18, is
most famous for his book Cybernetics, or Control and Communication in the Animal and Machine
(1948). He coined the word cybernetics (derived from the Greek for steersman) to identify a theory
that related biological processes in humans and animals to the mechanics of computers and robots. In
popular culture, the ubiquitous cyber-prefix now denotes anything related to the computer. Most
notably, the interconnection of millions of computers through the Internet is known as cyberspace, a
word coined by cyberpunk sciencefiction novelist William Gibson in his 1984 novel Neuromancer.

In 1948, the Eckert-Mauchly Computer Corporation (later part of Remington Rand) began work on
what would become the first commercially available computer—the Universal Automatic Computer,
or UNIVAC. It was completed in 1951, and the first one was delivered to the Bureau of the Census.
The UNIVAC made its prime-time network debut on CBS, when it was used to predict results of the
1952 presidential election. Walter Cronkite referred to it as an "electronic brain." Also in 1952, IBM
announced the company's first commercial computer system, the 701.

And thus began a long history of corporate and governmental computing. However interesting that
history might be, we're going to pursue another historical track—a track that shrank the cost and size
of computers and brought them into the home, and which began with an almost unnoticed electronics
breakthrough in 1947.

Bell Telephone Laboratories was for many years a place where smart people could work on just
about anything that interested them. Some of them, fortunately, were interested in computers. I've
already mentioned George Stibitz and Claude Shannon, both of whom made significant contributions
to early computing while working at Bell Labs. Later on, in the 1970s, Bell Labs was the birthplace
of the influential computer operating system named Unix and a programming language named C,

which I'll describe in upcoming chapters.

Bell Labs came about when American Telephone and Telegraph officially separated their scientific
and technical research divisions from the rest of their business, creating the subsidiary on January 1,
1925. The primary purpose of Bell Labs was to develop technologies for improving the telephone
system. That mandate was fortunately vague enough to encompass all sorts of things, but one obvious
perennial goal within the telephone system was the undistorted amplification of voice signals
transmitted over wires.

Since 1912, the Bell System had worked with vacuum tube amplification, and a considerable amount
of research and engineering went into improving vacuum tubes for use by the telephone system.
Despite this work, vacuum tubes still left much to be desired. Tubes were large, consumed a lot of
power, and eventually burned out. But they were the only game in town.

All that changed December 16, 1947, when two physicists at Bell Labs named John Bardeen (1908—
1991) and Walter Brattain (1902—-1987) wired a different type of amplifier. This new amplifier was
constructed from a slab of germanium—an element known as a semiconductor—and a strip of gold
foil. They demonstrated it to their boss, William Shockley (1910-1989), a week later. It was the first
transistor, a device that some people have called the most important invention of the twentieth
century.

The transistor didn't come out of the blue. Eight years earlier, on December 29, 1939, Shockley had
written in his notebook, "It has today occurred to me that an amplifier using semiconductors rather
than vacuum is in principle possible." And after that first transistor was demonstrated, many years
followed in perfecting it. It wasn't until 1956 that Shockley, Bardeen, and Brattain were awarded the
Nobel Prize in physics "for their researches on semiconductors and their discovery of the transistor
effect.”

Earlier in this book, I talked about conductors and insulators. Conductors are so called because
they're very conducive to the passage of electricity. Copper, silver, and gold are the best conductors,
and it's no coincidence that all three are found in the same column of the periodic table of the
elements.

As you'll recall, the electrons in an atom are distributed in shells that surround the nucleus of the
atom. What characterizes these three conductors is a lone electron in the outermost shell. This
electron can be easily dislodged from the rest of the atom and hence is free to move as electrical
current. The opposites of conductors are insulators—Ilike rubber and plastic—that barely conduct
electricity at all.

The elements germanium and silicon (as well as some compounds) are called semiconductors, not
because they conduct half as well as conductors, but because their conductance can be manipulated in
various ways. Semiconductors have four electrons in the outermost shell, which is half the maximum
number the outer shell can have. In a pure semiconductor, the atoms form very stable bonds with each
other and have a crystalline structure similar to the diamond. Such semiconductors aren't good
conductors.

But semiconductors can be doped, which means that they're combined with certain impurities. One
type of impurity adds extra electrons to those needed for the bond between the atoms. These are
called N-type semiconductors (N for negative). Another type of impurity results in a P-type
semiconductor.

Semiconductors can be made into amplifiers by sandwiching a P-type semiconductor between two N-
type semiconductors. This is known as an NPN transistor, and the three pieces are known as the
collector, the base, and the emitter.

Here's a schematic diagram of an NPN transistor:
Collector

Base 4@)

Emitter

A small voltage on the base can control a much larger voltage passing from the collector to the
emitter. If there's no voltage on the base, it effectively turns off the transistor.

Transistors are usually packaged in little metal cans about a quarter-inch in diameter with three wires
poking out:

The transistor inaugurated solid-state electronics, which means that transistors don't require vacuums
and are built from solids, specifically semiconductors and most commonly (these days) silicon.
Besides being much smaller than vacuum tubes, transistors require much less power, generate much
less heat, and last longer. Carrying around a tube radio in your pocket was inconceivable. But a
transistor radio could be powered by a small battery, and unlike tubes, it wouldn't get hot. Carrying a
transistor radio in your pocket became possible for some lucky people opening presents on Christmas
morning in 1954. Those first pocket radios used transistors made by Texas Instruments, an important
company of the semiconductor revolution.

The first commercial application of the transistor was, however, a hearing aid. In commemorating the
heritage of Alexander Graham Bell in his lifelong work with deaf people, AT&T allowed hearing aid
manufacturers to use transistor technology without paying any royalties. The first transistor television
debuted in 1960, and today tube appliances have almost disappeared. (Not entirely, however. Some
audiophiles and electric guitarists continue to prefer the sound of tube amplifiers to their transistor
counterparts.)

In 1956, Shockley left Bell Labs to form Shockley Semiconductor Laboratories. He moved to Palo
Alto, California, where he had grown up. His was the first such company to locate in that area. In
time, other semiconductor and computer companies set up business there, and the area south of San
Francisco is now informally known as Silicon Valley.

Vacuum tubes were originally developed for amplification, but they could also be used for switches
in logic gates. The same goes for the transistor. On the next page, you'll see a transistor-based AND
gate structured much like the relay version. Only when both the A input is 1 and the B input is 1 will
both transistors conduct current and hence make the output 1. The resistor prevents a short circuit
when this happens.

Wiring two transistors as you see below in the diagram on the right creates an OR gate. In the AND
gate, the emitter of the top transistor is connected to the collector of the bottom transistor. In the OR
gate, the collectors of both transistors are connected to the voltage supply. The emitters are connected
together.

OR gate

AND gate

\
Aln

Aln

V o
V'
B In
Qurt B In
Out

So everything we learned about constructing logic gates and other components from relays is valid for
transistors. Relays, tubes, and transistors were all initially developed primarily for purposes of
amplification but can be connected in similar ways to make logic gates out of which computers can be
built. The first transistor computers were built in 1956, and within a few years tubes had been
abandoned for the design of new computers.

Here's a question: Transistors certainly make computers more reliable, smaller, and less power
hungry. But do transistors make computers any simpler to construct?

Not really. The transistor lets you fit more logic gates in a smaller space, of course, but you still have
to worry about all the interconnections of these components. It's just as difficult wiring transistors to
make logic gates as it is wiring relays and vacuum tubes. In some ways, it's even more difficult
because the transistors are smaller and less easy to hold. If you wanted to build the Chapter 17
computer and the 64-KB RAM array out of transistors, a good part of the design work would be
devoted to inventing some kind of structure in which to hold all the components. Most of your
physical labor would be the tedious wiring of millions of interconnections among millions of
transistors.

As we've discovered, however, there are certain combinations of transistors that show up repeatedly.
Pairs of transistors are almost always wired as gates. Gates are often wired into flip-flops or adders

or selectors or decoders. Flip-flops are combined into multibit latches or RAM arrays. Assembling a
computer would be much easier if the transistors were prewired in common configurations.

This idea seems to have been proposed first by British physicist Geoffrey Dummer (born 1909) in a

speech in May 1952. "I would like to take a peep into the future," he said.

With the advent of the transistor and the work in semiconductors generally, it seems now possible to envisage electronic
equipment in a solid block with no connecting wires. The block may consist of layers of insulating, conducting, rectifying and
amplifying materials, the electrical functions being connected directly by cutting out areas of the various layers.

A working product, however, would have to wait a few years.

Without knowing about the Dummer prediction, in July 1958 it occurred to Jack Kilby (born 1923) of
Texas Instruments that multiple transistors as well as resistors and other electrical components could
be made from a single piece of silicon. Six months later, in January 1959, basically the same idea
occurred to Robert Noyce (1927-1990). Noyce had originally worked for Shockley Semiconductor
Laboratories, but in 1957 he and seven other scientists had left and started Fairchild Semiconductor
Corporation.

In the history of technology, simultaneous invention is more common than one might suspect. Although
Kilby had invented the device six months before Noyce, and Texas Instruments had applied for a
patent before Fairchild, Noyce was issued a patent first. Legal battles ensued, and only after a decade
were they finally settled to everyone's satisfaction. Although they never worked together, Kilby and
Noyce are today regarded as the coinventors of the integrated circuit, or IC, commonly called the
chip.

Integrated circuits are manufactured through a complex process that involves layering thin wafers of
silicon that are precisely doped and etched in different areas to form microscopic components.
Although it's expensive to develop a new integrated circuit, they benefit from mass production—the
more you make, the cheaper they become.

The actual silicon chip is thin and delicate, so it must be securely packaged, both to protect the chip
and to provide some way for the components in the chip to be connected to other chips. Integrated
circuits are packaged in a couple of different ways, but the most common is the rectangular plastic
dual inline package (or DIP), with 14, 16, or as many as 40 pins protruding from the side:

This is a 16-pin chip. If you hold the chip so the little indentation is at the left (as shown), the pins are
numbered 1 through 16 beginning at the lower left and circling around the right side to end with pin

16 at the upper left. The pins on each side are exactly A0 inch apart.

Throughout the 1960s, the space program and the arms race fueled the early integrated circuits
market. On the civilian side, the first commercial product that contained an integrated circuit was a
hearing aid sold by Zenith in 1964. In 1971, Texas Instruments began selling the first pocket
calculator, and Pulsar the first digital watch. (Obviously the IC in a digital watch is packaged much
differently from the example just shown.) Many other products that incorporated integrated circuits in
their design followed.

In 1965, Gordon E. Moore (then at Fairchild and later a cofounder of Intel Corporation) noticed that
technology was improving in such a way that the number of transistors that could fit on a single chip
had doubled every year since 1959. He predicted that this trend would continue. The actual trend was

a little slower, so Moore's Law (as it was eventually called) was modified to predict a doubling of
transistors on a chip every 18 months. This is still an astonishingly fast rate of progress and reveals
why home computers always seem to become outdated in just a few short years. Some people believe
that Moore's Law will continue to be accurate until about 2015.

In the early days, people used to speak of small-scale integration, or SSI, to refer to a chip that had
fewer than 10 logic gates; medium-scale integration, or MSI (10 to 100 gates); and large-scale
integration, or LSI (100 to 5000). Then the terms ascended to very-large-scale integration, or VLSI
(5000 to 50,000); super-large-scale integration, or SLSI (50,000 to 100,000); and ultra-large-scale
integration, (more than 100,000 gates).

For the remainder of this chapter and the next, I want to pause our time machine in the mid-1970s, an
ancient age before the first Star Wars movie was released and with VLSI just on the horizon. At that
time, several different technologies were used to fabricate the components that make up integrated
circuits. Each of these technologies is sometimes called a family of ICs. By the mid-1970s, two
families were prevalent: TTL (pronounced tee tee ell) and CMOS (see moss).

TTL stands for transistor-transistor logic. If in the mid-1970s you were a digital design engineer
(which meant that you designed larger circuits from ICs), a 1 Y4-inch-thick book first published in
1973 by Texas Instruments called The TTL Data Book for Design Engineers would be a permanent
fixture on your desk. This is a complete reference to the 7400 (seventy-four hundred) series of TTL
integrated circuits sold by Texas Instruments and several other companies, so called because each IC
in this family is identified by a number beginning with the digits 74.

Every integrated circuit in the 7400 series consists of logic gates that are prewired in a particular
configuration. Some chips provide simple prewired gates that you can use to create larger

components; other chips provide common components such as flip-flops, adders, selectors, and
decoders.

The first IC in the 7400 series is number 7400 itself, which is described in the TTL Data Book as
"Quadruple 2-Input Positive-NAND Gates." What this means is that this particular integrated circuit
contains four 2-input NAND gates. They're called positive NAND gates because a voltage
corresponds to 1 and no voltage corresponds to 0. This is a 14-pin chip, and a little diagram in the
data book shows how the pins correspond to the inputs and outputs:

Vee 4B 4A 4Y 3B 3A 3Y

— 14 15 (I 11 10 9 8 M

A
ol Lo

1A 1B 1Y 2A 2B ik 4 Gnd

This diagram is a top view of the chip (pins on the bottom) with the little indentation (shown on page
250) at the left.

Pin 14 is labeled V¢ and is equivalent to the V symbol that I've been using to indicate a voltage. (By

convention, any double letter subscript on a capital V indicates a power supply. The C in this
subscript refers to the collector input of a transistor, which is internally where the voltage supply is
connected.) Pin 7 is labeled GND for ground. Every integrated circuit that you use in a particular
circuit must be connected to a power supply and a common ground.

For 7400 series TTL, V- must be between 4.75 and 5.25 volts. Another way of saying this is that the

power supply voltage must be 5 volts plus or minus 5 percent. If the power supply is below 4.75
volts, the chip might not work. If it's higher than 5.25, the chip could be damaged. You generally can't
use batteries with TTL; even if you were to find a 5-volt battery, the voltage wouldn't be exact enough
to be adequate for these chips. TTL usually requires a power supply that you plug into the wall.

Each of the four NAND gates in the 7400 chip has two inputs and one output. They work
independently of each other. In past chapters, we've been differentiating between inputs being either 1
(which is a voltage) or 0 (which is no voltage). In reality, an input to one of these NAND gates can
range anywhere from 0 volts (ground) to 5 volts (V). In TTL, anything between 0 volts and 0.8 volt

is considered to be a logical 0, and anything between 2 volts and 5 volts is considered to be a logical
1. Inputs between 0.8 volt and 2 volts should be avoided.

The output of a TTL gate is typically about 0.2 volt for a logical 0 and 3.4 volts for a logical 1.
Because these voltages can vary somewhat, inputs and outputs to integrated circuits are sometimes
referred to as low and high rather than 0 and 1. Moreover, sometimes a low voltage can mean a
logical 1 and a high voltage can mean a logical 0. This configuration is referred to as negative logic.
When the 7400 chip is referred to as "Quadruple 2-Input Positive-NAND Gates," the word positive
means positive logic is assumed.

If the output of a TTL gate is typically 0.2 volt for a logical 0 and 3.4 volts for a logical 1, these
outputs are safely within the input ranges, which are between 0 and 0.8 volt for a logical 0 and
between 2 and 5 volts for a logical 1. This is how TTL is insulated against noise. A 1 output can lose
about 1.4 volts and still be high enough to qualify as a 1 input. A 0 output can gain 0.6 volt and still
be low enough to qualify as a 0 input.

Probably the most important fact to know about a particular integrated circuit is the propagation
time. That's the time it takes for a change in the inputs to be reflected in the output.

Propagation times for chips are generally measured in nanoseconds, abbreviated nsec. A nanosecond
is a very short period of time. One thousandth of a second is a millisecond. One millionth of a second
is a microsecond. One billionth of a second is a nanosecond. The propagation time for the NAND
gates in the 7400 chip is guaranteed to be less than 22 nanoseconds. That's 0.000000022 seconds, or
22 billionths of a second.

If you can't get the feel of a nanosecond, you're not alone. Nobody on this planet has anything but an
intellectual appreciation of the nanosecond. Nanoseconds are much shorter than anything in human
experience, so they'll forever remain incomprehensible. Every explanation makes the nanosecond
more elusive. For example, I can say that if you're holding this book 1 foot away from your face, a
nanosecond is the time it takes the light to travel from the page to your eyes. But do you really have a
better feel for the nanosecond now?

Yet the nanosecond is what makes computers possible. As we saw in Chapter 17, a computer
processor does moronically simple things—it moves a byte from memory to register, adds a byte to
another byte, moves the result back to memory. The only reason anything substantial gets completed
(not in the Chapter 17 computer but in real ones) is that these operations occur very quickly. To quote
Robert Noyce, "After you become reconciled to the nanosecond, computer operations are
conceptually fairly simple."

Let's continue perusing the TTL Data Book for Design Engineers. You will see a lot of familiar little
items in this book. The 7402 chip contains four 2-input NOR gates, the 7404 has six inverters, the
7408 has four 2-input AND gates, the 7432 has four 2-input OR gates, and the 7430 has an 8-input
NAND gate:

V CC Nc¢ H G INc Nc i
— 14 13 12 11 10 9 8 =
s [2 3 4 6 7 =

5
A B & D E F Gnd
The abbreviation NC means no connection.

The 7474 chip is another that will sound very familiar. It's a "Dual D-Type Positive-Edge-Triggered
Flip-Flop with Preset and Clear" and is diagrammed like this:

Vee 2CIk 2D 2Ck 2Pre 2Q 2Q

— 14 12 i 1 11 10 9 8
L L L
1 3
t , PRE Q_]
L .
k. _ N
Q Q_.J
o Clr
A BClk
> W L i
[I \
%
: Y)]
—1 1 2 3 4 5 6 7 =

1ICr 1D 1Clk 1Pre 1Q 1Q Gnd
The TTL Data Book even includes a logic diagram for each flip-flop in this chip:

(T
Preset .
F—
e
Clear Q
1
L b Q
Clock + }
G B

You'll recognize this as being similar to the diagram at the end of Chapter 14, except that I used NOR
gates. The logic table in the TTL Data Book is a little different as well:

Inputs Outputs

Pre ClIr|CIk |D Q Q
L |[H X |[X/H L
H L X X/ L |H
L |L |X |X H* H*
H |[L |1t HH |L

H |[H |+ |L|L |H

H H |L XQOQO

In this table, the H stands for High and the L stands for Low. You can think of these as 1 and 0 if you
wish. In my flip-flop, the Preset and Clear inputs were normally 0; here they're normally 1.

Moving right along in the TTL Data Book, you'll discover that the 7483 chip is a 4-Bit Binary Full
Adder, 74151 is a 8-Line-To-1-Line Data Selector, the 74154 is a 4-line-To-16-Line Decoder,
74161 is a Synchronous 4-Bit Binary Counter, and 74175 is a Quadruple D-Type Flip-Flop with
Clear. You can use two of these chips for making an 8-bit latch.

So now you know how I came up with all the various components I've been using since Chapter 11. I
stole them from the TTL Data Book for Design Engineers.

As a digital design engineer, you would spend long hours going through the TTL Data Book

familiarizing yourself with the types of TTL chips that were available. Once you knew all your tools,
you could actually build the computer I showed in Chapter 17 out of TTL chips. Wiring the chips
together is a lot easier than wiring individual transistors together. But you might want to consider not
using TTL to make the 64-KB RAM array. In the 1973 TTL Data Book, the heftiest RAM chip listed
is a mere 256 x 1 bits. You'd need 2048 of these chips to make 64 KB! TTL was never the best
technology for memory. I'll have more to say about memory in Chapter 21.

You'd probably want to use a better oscillator as well. While you can certainly connect the output of a
TTL inverter to the input, it's better to have an oscillator with a more predictable frequency. Such an
oscillator can be constructed fairly easily using a quartz crystal that comes in a little flat can with two
wires sticking out. These crystals vibrate at very specific frequencies, usually at least a million
cycles per second. A million cycles per second is called a megahertz and abbreviated MHz. If the
Chapter 17 computer were constructed out of TTL, it would probably run fine with a clock frequency
of 10 MHz. Each instruction would execute in 400 nanoseconds. This, of course, is much faster than
anything we conceived when we were working with relays.

The other popular chip family was (and still is) CMOS, which stands for complementary metal-
oxide semiconductor. If you were a hobbyist designing circuits from CMOS ICs in the mid-1970s,
you might use as a reference source a book published by National Semiconductor and available at
your local Radio Shack entitted CMOS Databook. This book contains information about the 4000
(four thousand) series of CMOS ICs.

The power supply requirement for TTL is 4.75 to 5.25 volts. For CMOS, it's anything from 3 volts to
18 volts. That's quite a leeway! Moreover, CMOS requires much less power than TTL, which makes
it feasible to run small CMOS circuits from batteries. The drawback of CMOS is lack of speed. For
example, the CMOS 4008 4-bit full adder running at 5 volts is only guaranteed to have a propagation
time of 750 nanoseconds. It gets faster as the power supply gets higher—250 nsec at 10 volts and 190
nsec at 15 volts. But the CMOS device doesn't come close to the TTL 4-bit adder, which has a
propagation time of 24 nsec. (Twenty-five years ago, the trade-off between the speed of TTL and the
low power requirements of CMOS was fairly clear cut. Today there are low-power versions of TTL
and high-speed versions of CMOS.)

On the practical side, you would probably begln wmng chips together ona plasﬂc breadboard:

EEZEE EZEEI SR R R R

: 'EEEEE‘EEZEEEZEEEEEEEEEZZEEEEZEEEE[ZE "
fis _EEEEEEEZIEEEEEEEEEEZEEZEEIEEEEEEEIEEE Bt
' MMXMMMMKMMF&T&)JMMMMFC ﬂiaﬁiMMMMXRMMMKE‘CN
- . [it] i] i]] e e]))]] [:
[R o 3 ..E;ﬁ'[KEC[E]‘E EﬁXEKH@@EXEEEEEEE '

R 8, D 6 e X A K R
] e] 0 T o D o T R]
T S] S S) D R -
o]] i O i o i e R R
--] i i i] D i o, D] i D o o o -

CEEREE MEEEE SRR MEERE MEKERE MEXEE

Each short row of 5 holes is electrically connected underneath the plastic base. You insert chips into
the breadboard so that a chip straddles the long central groove and the pins go into the holes on either
side of the groove. Each pin of the IC is then electrically connected to 4 other holes. You connect the

chips with pieces of wires pushed into the other holes.

You can wire chips together more permanently using a technique called wire-wrapping. Each chip is
inserted into a socket that has long square posts:
ClelelelelSIole)

\E\E\N\&\E\\

Each post corresponds to a pin of the chip. The sockets themselves are inserted into thin perforated
boards. From the other side of the board, you use a special wire-wrap gun to tightly wrap thin pieces
of insulated wire around the post. The square edges of the post break through the insulation and make
an electrical connection with the wire.

If you were actually manufacturing a particular circuit using ICs, you'd probably use a printed circuit
board. Back in the old days, this was something a hobbyist could do. Such a board has holes and is
covered by a thin layer of copper foil. Basically, you cover all the areas of copper you want to
preserve with an acid resistant and use acid to etch away the rest. You can then solder IC sockets (or
the ICs themselves) directly to the copper on the board. But because of the very many
interconnections among ICs, a single area of copper foil is usually inadequate. Commercially
manufactured printed circuit boards have multiple layers of interconnections.

By the early 1970s, it became possible to use ICs to create an entire computer processor on a single
circuit board. It was really only a matter of time before somebody put the whole processor on a single
chip. Although Texas Instruments filed a patent for a single-chip computer in 1971, the honor of
actually making one belongs to Intel, a company started in 1968 by former Fairchild employees
Robert Noyce and Gordon Moore. Intel's first major product was, in 1970, a memory chip that stored
1024 bits, which was the greatest number of bits on a chip at that time.

Intel was in the process of designing chips for a programmable calculator to be manufactured by the
Japanese company Busicom when they decided to take a different approach. As Intel engineer Ted
Hoff put it, "Instead of making their device act like a calculator with some programming abilities, I
wanted to make it function as a general-purpose computer programmed to be a calculator.” This led to
the Intel 4004 (pronounced forty oh four), the first "computer on a chip," or microprocessor. The
4004 became available in November 1971 and contained 2300 transistors. (By Moore's Law,
microprocessors made 18 years later should contain about 4000 times as many transistors, or about
10 million. That's a fairly accurate prediction.)

Having told you the number of its transistors, I'll now describe three other important characteristics of
the 4004. These three measures are often used as standards for comparison among microprocessors
since the 4004.

First, the 4004 was a 4-bit microprocessor. This means that the data paths in the processor were only
4 bits wide. When adding or subtracting numbers, it handled only 4 bits at a shot. In contrast, the
computer developed in Chapter 17 has 8-bit data paths and is thus an 8-bit processor. As we'll soon
see, 4-bit microprocessors were surpassed very quickly by 8-bit microprocessors. No one stopped
there. In the late 1970s, 16-bit microprocessors became available. When you think back to Chapter 17
and recall the several instruction codes necessary to add two 16-bit numbers on an 8-bit processor,
you'll appreciate the advantage that a 16-bit processor gives you. In the mid-1980s, 32-bit

microprocessors were introduced and have remained the standard for home computers since then.

Second, the 4004 had a maximum clock speed of 108,000 cycles per second, or 108 kilohertz (KHz).
Clock speed is the maximum speed of an oscillator that you can connect to the microprocessor to
make it go. Any faster and it might not work right. By 1999, microprocessors intended for home
computers had hit the 500-megahertz point—about 5000 times faster than the 4004.

Third, the addressable memory of the 4004 was 640 bytes. This seems like an absurdly low amount;
yet it was in line with the capacity of memory chips available at the time. As you'll see in the next
chapter, within a couple of years microprocessors could address 64 KB of memory, which is the
capability of the Chapter 17 machine. Intel microprocessors in 1999 can address 64 terabytes of
memory, although that's overkill considering that most people have fewer than 256 megabytes of
RAM in their home computers.

These three numbers don't affect the capability of a computer. A 4-bit processor can add 32-bit
numbers, for example, simply by doing it in 4-bit chunks. In one sense, all digital computers are the
same. If the hardware of one processor can do something another can't, the other processor can do it
in software; they all end up doing the same thing. This is one of the implications of Alan Turing's
1937 paper on computability.

Where processors ultimately do differ, however, is in speed. And speed is a big reason why we're
using computers to begin with.

The maximum clock speed is an obvious influence on the overall speed of a processor. That clock
speed determines how fast each instruction is being executed. The processor data width affects speed
as well. Although a 4-bit processor can add 32-bit numbers, it can't do it nearly as fast as a 32-bit
processor. What might be confusing, however, is the effect on speed of the maximum amount of
memory that a processor can address. At first, addressable memory seems to have nothing to do with
speed and instead reflects a limitation on the processor's ability to perform certain functions that
might require a lot of memory. But a processor can always get around the memory limitation by using
some memory addresses to control some other medium for saving and retrieving information. (For
example, suppose every byte written to a particular memory address is actually punched on a paper
tape, and every byte read from that address is read from the tape.) What happens, however, is that this
process slows down the whole computer. The issue again is speed.

Of course, these three numbers indicate only roughly how fast the microprocessor operates. These
numbers tell you nothing about the internal architecture of the microprocessor or about the efficiency
and capability of the machine-code instructions. As processors have become more sophisticated,
many common tasks previously done in software have been built into the processor. We'll see
examples of this trend in the chapters ahead.

Even though all digital computers have the same capabilities, even though they can do nothing beyond
the primitive computing machine devised by Alan Turing, the speed of a processor of course
ultimately affects the over-all usefulness of a computer system. Any computer that's slower than the
human brain in performing a set of calculations is useless, for example. And we can hardly expect to
watch a movie on our modern computer screens if the processor needs a minute to draw a single
frame.

But back to the mid-1970s. Despite the limitations of the 4004, it was a start. By April 1972, Intel had
released the 8008—an 8-bit microprocessor running at 200 kHz that could address 16 KB of memory.

(See how easy it is to sum up a processor with just three numbers?) And then, in a five-month period
in 1974, both Intel and Motorola came out with microprocessors that were intended to improve on the
8008. These two chips changed the world.

Chapter 19. Two Classic Microprocessors

The microprocessor—a consolidation of all the components of a central processing unit (CPU) of a
computer on a single chip of silicon—was born in 1971. It was a modest beginning: The first
microprocessor, the Intel 4004, contained about 2300 transistors. Today, nearly three decades later,
microprocessors made for home computers are approaching the 10,000,000 transistor mark.

Yet what the microprocessor actually does on a fundamental level has remained unchanged. While
those millions of additional transistors in today's chips might be doing interesting things, in an initial
exploration of the microprocessor they offer more distraction than enlightenment. To obtain the
clearest view of what a microprocessor does, let's look at the first ready-for-prime-time
MiCroprocessors.

These microprocessors appeared in 1974, the year in which Intel introduced the 8080 (pronounced
eighty eighty) in April and Motorola—a company that had been making semiconductors and
transistor-based products since the 1950s—introduced the 6800 (sixty-eight hundred) in August.
These weren't the only microprocessors available that year. Also in 1974, Texas Instruments
introduced the 4-bit TMS 1000, which was used in many calculators, toys, and appliances; and
National Semiconductor introduced the PACE, which was the first 16-bit microprocessor. In
retrospect, however, the 8080 and the 6800 were certainly the two most historically significant chips.

Intel set the initial price of the 8080 at $360, a sly dig at IBM's System/360, a large mainframe system
used by many large corporations that cost millions. (Today you can buy an 8080 chip for $1.95.) It's
not as if the 8080 is comparable to System/360 in any way, but within a few years IBM itself would
certainly be taking notice of these very small computers.

The 8080 is an 8-bit microprocessor that contains about 6000 transistors, runs at a 2 MHz clock
speed, and addresses 64 kilobytes of memory. The 6800 (also selling these days for $1.95) has about
4000 transistors and also addresses 64 KB of memory. The first 6800 ran at 1 MHz, but by 1977
Motorola introduced later versions running at 1.5 and 2 MHz.

These chips are referred to as single-chip microprocessors and less accurately as computers on a
chip. The processor is only one part of the whole computer. In addition to the processor, a computer
at the very least requires some random access memory (RAM), some way for a person to get
information into the computer (an input device), some way for a person to get information out of the
computer (an output device), and several other chips that bind everything together. But I'll describe
these other components in greater detail in Chapter 21.

For now, let's look at the microprocessor itself. Often a description of a microprocessor is
accompanied by a block diagram that illustrates the internal components of the microprocessor and
how they're connected. But we had enough of that in Chapter 17. Instead, we'll get a sense of what's
inside the processor by seeing how it interacts with the outside world. In other words, we can think of
the microprocessor as a black box whose internal operations we don't need to study minutely in order
to understand what it does. We can instead grasp what the microprocessor does by examining the
chip's input and output signals, and in particular the chip's instruction set.

Both the 8080 and 6800 are 40-pin integrated circuits. The most common IC package for these chips
is about 2 inches long, about a half inch wide, and %6 inch thick:

Of course, what you see is just the packaging. The actual wafer of silicon inside is much smaller—in
the case of the early 8-bit microprocessors, the silicon is less than 4 inch square. The packaging
protects the silicon chip and also provides access to all of the chip's input and output points through
the pins. The diagram on the following page shows the function of the 40 pins of the 8080.

Ay =1 = 40— Ayy
D; - 3 38 —» A3
DE -» 4 37 p—» ﬂu
Dg <> 5 36 > Ay
D- - 6 35 = Ag
Dy - 7 34 —» Ag
D, +» 8 33 —» A-
D, =9 32 —» A4
D, <> 10 31 > As
5V 11 Intel 30 —» A
- 8080 14
RESET —»{ 12 29 = A,
HOLD —= 13 28 — +12V
INT —» 14 27 —» A,
gy —» 15 26 = Ay
INTE +—— 16 25 —*» Ay
DBIN «— 17 24 —» WAIT
WR <+—{ 18 23 — READY
SYNC «+— 19 20 e— Gy
+5V 20 21 = HLDA

Every electrical or electronic device that we've built in this book has required some kind of electrical
power supply. One of the 8080's quirks is that it requires three power supply voltages. Pin 20 must
be connected to a 5-volt power supply, pin 11 to a —5-volt power supply, and pin 28 to a 12-volt
power supply. You connect pin 2 to ground. (In 1976, Intel released the 8085 chip, which simplified
these power requirements.)

All the remaining pins are drawn as arrows. An arrow from the chip indicates an output signal. This
is a signal controlled by the microprocessor that other chips in the computer respond to. An arrow
into the chip indicates an input signal. This is a signal that comes from another chip in the computer
that the 8080 responds to. Some pins are both inputs and outputs.

The processor in Chapter 17 required an oscillator to make it go. The 8080 requires two different

synchronized 2-MHz clock inputs labeled g, and @, on pins 22 and 15. These signals are most

conveniently supplied by another chip made by Intel known as the 8224 Clock Signal Generator. You
connect an 18-MHz quartz crystal to this chip, and it basically does the rest.

A microprocessor always has multiple output signals that address memory. The number of signals it
has for this purpose is directly related to the amount of memory the microprocessor can address. The
8080 has 16 signals labeled A, through A;c, which give it the ability to address 2'°, or 65,536, bytes

of memory.

The 8080 is an 8-bit microprocessor that reads data from memory and writes data to memory 8 bits at
a time. The chip includes eight signals labeled D, through D-. These signals are the only ones on the

chip that are both inputs and outputs. When the microprocessor reads a byte of memory, the pins
function as inputs; when the microprocessor writes a byte to memory, the pins function as outputs.

The other ten pins of the microprocessor are control signals. The RESET input, for example, is used
to reset the microprocessor. The output signal WR jndicates that the microprocessor needs to write a

byte of memory into RAM. (The WR signal corresponds to the Write input of the RAM array.) In
addition, other control signals appear on the D, through D-, pins at a particular time while the chip

reads instructions. Computer systems built around the 8080 generally use the 8228 System Controller
chip to latch these additional control signals. I'll describe some control signals later on, but the
8080's control signals are notoriously messy, so unless you're going to actually design a computer
based on the chip, it's best not to torture yourself with its control signals.

Let's assume that the 8080 microprocessor is connected to 64 KB of memory that we have the ability
to write bytes into and read bytes from independent of the microprocessor.

After the 8080 chip is reset, it reads the byte located at memory address 0000h into the
microprocessor. It does this by outputting 16 zeros on the address signals A, through A;z. The byte it

reads should be an 8080 instruction, and the process of reading this byte is known as an instruction
fetch.

In the computer we built in Chapter 17, all instructions (except HLT) were 3 bytes in length,
consisting of an opcode and a 2-byte address. In the 8080, instructions can be 1 byte, 2 bytes, or 3
bytes in length. Some instructions cause the 8080 to read a byte from a particular location in memory
into the microprocessor. Some instructions cause the 8080 to write a byte from the microprocessor
into a particular location in memory. Other instructions cause the 8080 to do something internally
without using any RAM. After processing the first instruction, the 8080 accesses the second
instruction in memory, and so forth. Together, these instructions constitute a computer program that
can do something interesting.

When the 8080 is running at its maximum speed of 2 MHz, each clock cycle is 500 nanoseconds. (1 +
2,000,000 cycles per second = 0.000000500 seconds.) The instructions in the Chapter 17 computer
all required 4 clock cycles. Each 8080 instruction requires anywhere from 4 to 18 clock cycles. This
means that each instruction is executed in 2 to 9 microseconds (millionths of a second).

Probably the best way to understand what a particular microprocessor is capable of doing is to
examine its complete instruction set in a systematic manner.

The final computer in Chapter 17 had only 12 instructions. An 8-bit microprocessor could easily have

as many as 256 instructions, each opcode corresponding to a particular 8-bit value. (It could actually
have more if some instructions have 2-byte opcodes.) The 8080 doesn't go quite that far, but it does
have 244 opcodes. That might seem like a lot, but all in all, the 8080 doesn't really do all that much
more than the computer in Chapter 17. For example, if you need to do multiplication or division using
an 8080, you still need to write your own little program to do it.

As you'll recall from Chapter 17, each opcode in a processor's instruction set is usually associated
with a particular mnemonic, and some of these mnemonics might have arguments. But these
mnemonics are solely for convenience in referring to the opcodes. The processor reads only bytes; it
knows nothing about the text that makes up the mnemonics. (For purposes of clarity, I've taken some
liberty with the mnemonics as they appear in Intel's documentation of the 8080.)

The Chapter 17 computer had two important instructions that we initially called Load and Store. Each
of these instructions occupied 3 bytes of memory. The first byte of a Load instruction was the opcode,
and the 2 bytes that followed the opcode indicated a 16-bit address. The processor loaded the byte at
that address into the accumulator. Similarly, the Store instruction saved the contents of the
accumulator in the address indicated in the instruction.

Later on, we discovered that we could abbreviate these two opcodes using mnemonics:

LOD A, [aaaa]
STO [aaaa],A

where A stands for the accumulator (the destination in the Load instruction and t